Rocksolid Light

Welcome to novaBBS (click a section below)

mail  files  register  newsreader  groups  login

Message-ID:  

Dead? No excuse for laying off work.


arts / alt.fan.heinlein / Here's How Many Years in Advance We'd Need to Stop a Killer Asteroid Coming For Earth

SubjectAuthor
o Here's How Many Years in Advance We'd Need to Stop a Killer Asteroida425couple

1
Here's How Many Years in Advance We'd Need to Stop a Killer Asteroid Coming For Earth

<s7knrj02ib8@news4.newsguy.com>

 copy mid

https://www.novabbs.com/arts/article-flat.php?id=502&group=alt.fan.heinlein#502

 copy link   Newsgroups: alt.astronomy alt.books.arthur-clarke alt.fan.heinlein
Path: i2pn2.org!i2pn.org!weretis.net!feeder8.news.weretis.net!news.uzoreto.com!news-out.netnews.com!newsin.alt.net!fdcspool1.netnews.com!news-out.netnews.com!news.alt.net!fdc2.netnews.com!peer02.ams1!peer.ams1.xlned.com!news.xlned.com!peer01.iad!feed-me.highwinds-media.com!news.highwinds-media.com!spln!extra.newsguy.com!newsp.newsguy.com!news4
From: a425cou...@hotmail.com (a425couple)
Newsgroups: alt.astronomy,alt.books.arthur-clarke,alt.fan.heinlein
Subject: Here's How Many Years in Advance We'd Need to Stop a Killer Asteroid
Coming For Earth
Date: Thu, 13 May 2021 19:38:42 -0700
Organization: NewsGuy.com
Lines: 149
Message-ID: <s7knrj02ib8@news4.newsguy.com>
NNTP-Posting-Host: pa81190d6fb12e3d0d4ff13c0c14b18a119e747ae2244a531.newsdawg.com
Mime-Version: 1.0
Content-Type: text/plain; charset=utf-8; format=flowed
Content-Transfer-Encoding: 8bit
X-Mozilla-News-Host: news://news.newsguy.com:119
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:78.0) Gecko/20100101
Thunderbird/78.10.1
Content-Language: en-US
X-Received-Bytes: 7877
 by: a425couple - Fri, 14 May 2021 02:38 UTC

from
https://www.sciencealert.com/here-s-how-many-years-in-advance-we-d-need-to-stop-a-killer-asteroid-coming-for-earth

Here's How Many Years in Advance We'd Need to Stop a Killer Asteroid
Coming For Earth

author logo
MORGAN MCFALL-JOHNSEN & AYLIN WOODWARD, BUSINESS INSIDER
13 MAY 2021

Last month, experts from NASA and other space agencies around the world
faced a troubling hypothetical scenario: A mysterious asteroid had just
been discovered 35 million miles away, and it was heading for Earth. The
space rock was expected to hit in six months.

The situation was fictional, part of a week-long exercise that simulated
an incoming asteroid in order to help US and international experts
practice how to respond to such a situation.

The simulation taught the group a difficult lesson: If an Earth-bound
asteroid were spotted with that little warning, there's nothing anyone
could do to keep it from hitting the planet.

The experts determined that no existing technologies could stop the
asteroid from striking, given the scenario's six-month window. There
isn't a spacecraft capable of destroying an asteroid or pushing it off
its path that could get off the ground and fly to the rock in that
amount of time.

Paul Chodas, manager of NASA's Center for Near-Earth Object Studies,
helped host the recent simulation, as well as five previous ones like
it. He said this exercise set the participants up for failure.

"It's what we call a short-warning scenario," he told Insider. "It was,
by design, very challenging."

In reality, if an asteroid like that fictional one were heading for
Earth, scientists would need years – not months – of warning. Five years
is the minimum, according to Chodas. Others, like MIT astronomer Richard
Binzel, say we'd need at least a decade.

"Time is the most valuable commodity you could possibly wish for, if
faced with a real asteroid threat," Binzel told Insider.

But scientists haven't identified most of the hazardous space rocks that
pass near our planet, which makes the chances slim that we'd get a five-
or 10-year warning period. In 2005, Congress attempted to address this
issue by mandating that NASA find and track 90% of all near-Earth
objects 140 meters (460 feet) or larger. At that size, asteroids could
obliterate a city the size of New York. But to date, NASA has only
spotted about 40% of those objects.

"What that means is, for now, we are relying on luck to keep us safe
from major asteroid impacts," Binzel said. "But luck is not a plan."

To defend a planet, 'know thy enemy'

In NASA's recent simulation, the participating scientists didn't know
how big the hypothetical asteroid was until a week before it was set to
hit Earth.

"We didn't know if the object was 35 meters across or 500 meters across.
And that makes a very big difference," Sarah Sonnett, a researcher at
the Planetary Science Institute who participated in the exercise, told
Insider.

A 35-meter asteroid could explode in the atmosphere and send shockwaves
through a neighborhood. A 500-meter asteroid could decimate a city,
affecting an area the size of France.

So a crucial part of stopping an asteroid from hitting Earth is
understanding as much as possible about the rock. That includes its
size, the path it takes around the sun, and what it's made of. With that
information, scientists can evaluate strategies to dismantle the rock or
disrupt its path.

"It takes time to know thy enemy," Binzel said.

Ideally, Sonnett said, scientists would be able to study a hazardous
asteroid as it passed Earth a few times in its orbit around the sun,
before that path brought it close enough to collide with our planet.
Observing a passing asteroid several times could take years or even decades.

Step 2: Destroy or deflect the asteroid
NASA has three main tools in its planetary-defense arsenal. The first is
to detonate an explosive device near an oncoming asteroid to break it up
into smaller, less dangerous chunks. The second is to fire lasers that
could heat up and vaporize the space rock enough to change its orbital
path. The third is to send a spacecraft to slam into the asteroid,
knocking it off its trajectory.

NASA is about to test that last strategy. Its Double Asteroid
Redirection Test will send a probe to the asteroid Dimorphos in the fall
of 2022 and purposefully hit it.

But any of the three options, Chodas said, would take years.

"Typically, that's a drawn-out, multi-year process to go from proposal
to actually having a spacecraft on a launch vehicle – let alone the fact
that you still have to cruise to get to your destination and deflect the
asteroid," he said.

After that, it would take one or two years for the asteroid's path
around the sun to actually change enough to carry it away from Earth.
That's why the timeline matters: The earlier scientists can identify a
hazardous space rock, the less ambitious a deflection mission would have
to be.

But of course, all of these methods are useless if nobody knows the
asteroid is coming.

"I think the best investment is in knowledge. The best investment is
knowing what's out there," Binzel said.

That means completing a catalogue of near-Earth objects that could
damage the Earth.

NASA is developing a space telescope to track asteroids

NASA is planning a mission to track down asteroids that are too dim for
telescopes on Earth to see. The NEO Surveyor Mission, as it's known (NEO
stands for near-Earth object), would launch an infrared telescope into
Earth's orbit in 2026. Sonnet is on that mission team.

"If we do the job now of finding those objects and tracking them,
knowing their orbits, knowing where they're going to head, and then
characterizing their sizes, then we should be in really good shape," she
said.

If the telescope launches and works as planned, it should fulfill NASA's
Congressional mandate to find 90% of the most dangerous near-Earth objects.

But for five years, the NEO Surveyor has been caught in "NASA mission
limbo hell," as Binzel put it. Due to insufficient funding, it hasn't
moved past the early development phase.

Sonnett has her fingers crossed that the NEO Surveyor Mission will do
well in an upcoming review. At the end of this month, NASA will assess
whether the mission is ready to move into the next phase. If so, the
team could start building prototypes and developing hardware and
software. If not, the telescope's launch could be delayed even further.

"Because we now have the capability to detect and know what is out
there, I think scientifically we have a moral responsibility to obtain
that information," Binzel said. "It would be unconscionable that we were
caught by surprise, by an asteroid impact that we could have seen coming."

This article was originally published by Business Insider.

1
server_pubkey.txt

rocksolid light 0.9.7
clearnet tor