Rocksolid Light

Welcome to novaBBS (click a section below)

mail  files  register  nodelist  faq  login

Digital circuits are made from analog parts. -- Don Vonada

computers / / Gödel_incompleteness_is_impossible_in_[correct_reasoning]

o Gödel_incompleteness_is_impossible_in_[correct_reaolcott

Subject: Gödel_incompleteness_is_impossible_in_[correct_reasoning]
From: olcott
Newsgroups: sci.math, sci.logic, comp.theory,
Followup: sci.logic,sci.math
Date: Thu, 10 Mar 2022 16:29 UTC
NNTP-Posting-Date: Thu, 10 Mar 2022 10:29:08 -0600
Date: Thu, 10 Mar 2022 10:29:06 -0600
MIME-Version: 1.0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:91.0) Gecko/20100101
Newsgroups: sci.math,sci.logic,comp.theory,
Content-Language: en-US
Followup-To: sci.logic,sci.math
From: (olcott)
Subject: Gödel_incompleteness_is_impossible_in_[correct_rea
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Message-ID: <>
Lines: 42
X-Trace: sv3-6d2HjoeA8P4A+RUlXy7k7Obj45MVUOH+Hak1hT5/BIxUpkqVy4VzFzeX6M/eKvCh9cQyKXvOmnjMt5g!TXJaZso+DHXrOqoud9Hdqq3uopnNORXt0WgtPeDJX8LL0PzN3pTPx5yruaBffPJYrmbQAccjhfYq
X-Abuse-and-DMCA-Info: Please be sure to forward a copy of ALL headers
X-Abuse-and-DMCA-Info: Otherwise we will be unable to process your complaint properly
X-Postfilter: 1.3.40
X-Original-Bytes: 3052
View all headers
When-so-ever truth preserving operations are applied to an initial set of expressions of (formal or natural) language derive another expression of language as a necessary consequence then reasoning is correct.

Furthermore when-so-ever the above process is applied to an initial set of expressions of (formal or natural) language that are known to be true (such as Haskell Curry elementary theorems) then we know that the derived expression of language is true.

Each of the two paragraphs above constitute proofs in correct reasoning, they are comparable to valid argument and a sound argument in deductive inference. Anything that diverges from the above model is not construed as a proof in correct reasoning.

Correct reasoning differs from deductively valid inference in that the conclusion must be a necessary consequence of its premises, thus the principle of explosion is not allowed.

Validity and Soundness
A deductive argument is said to be valid if and only if it takes a form that makes it impossible for the premises to be true and the conclusion nevertheless to be false. Otherwise, a deductive argument is said to be invalid.

A deductive argument is sound if and only if it is both valid, and all of its premises are actually true. Otherwise, a deductive argument is unsound.

Principle of explosion
In classical logic, intuitionistic logic and similar logical systems, the principle of explosion (Latin: ex falso [sequitur] quodlibet, 'from falsehood, anything [follows]';

Copyright 2021 Pete Olcott

Talent hits a target no one else can hit;
Genius hits a target no one else can see.
Arthur Schopenhauer

rocksolid light 0.7.2