Rocksolid Light

Welcome to novaBBS (click a section below)

mail  files  register  nodelist  faq  login

//GO.SYSIN DD *, DOODAH, DOODAH


programming / comp.programming / Re: More of my philosophy about the Post Graduate Program on lean Six Sigma and more..

SubjectAuthor
o Re: More of my philosophy about the Post Graduate Program on lean SixKristjan Robam

1
Subject: Re: More of my philosophy about the Post Graduate Program on lean Six Sigma and more..
From: Kristjan Robam
Newsgroups: comp.programming
Date: Sun, 8 May 2022 00:29 UTC
References: 1
X-Received: by 2002:a05:6214:29ed:b0:45a:aa8f:49 with SMTP id jv13-20020a05621429ed00b0045aaa8f0049mr8421891qvb.41.1651969770942;
Sat, 07 May 2022 17:29:30 -0700 (PDT)
X-Received: by 2002:a05:620a:1403:b0:69f:bb69:5a7e with SMTP id
d3-20020a05620a140300b0069fbb695a7emr7376200qkj.589.1651969770684; Sat, 07
May 2022 17:29:30 -0700 (PDT)
Path: i2pn2.org!i2pn.org!aioe.org!news.uzoreto.com!news-out.netnews.com!news.alt.net!fdc2.netnews.com!peer02.ams1!peer.ams1.xlned.com!news.xlned.com!peer01.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: comp.programming
Date: Sat, 7 May 2022 17:29:30 -0700 (PDT)
In-Reply-To: <3fc282ad-595c-485f-8f1e-2649ebd3805fn@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=82.131.39.252; posting-account=s3OxiwkAAABE2kqiXXKi7ZVC4Hsq_zQz
NNTP-Posting-Host: 82.131.39.252
References: <3fc282ad-595c-485f-8f1e-2649ebd3805fn@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <c8145492-1d40-4599-bab3-e9a83d0fe413n@googlegroups.com>
Subject: Re: More of my philosophy about the Post Graduate Program on lean Six
Sigma and more..
From: ya3891...@gmail.com (Kristjan Robam)
Injection-Date: Sun, 08 May 2022 00:29:30 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 19507
View all headers
Sa oled debiilik.




Amine Moulay Ramdane kirjutas Esmaspäev, 7. märts 2022 kl 22:26:26 UTC+1:
Hello,


More of my philosophy about the Post Graduate Program on lean Six Sigma and more..

I am a white arab, and i think i am smart since i have also
invented many scalable algorithms and algorithms..


More of my philosophy about Six Sigma and more..

I think i am smart, and now i will talk more about Six Sigma
since i have just talked about SPC(Statistical quality control), so
you have to know that Six Sigma needs to fulfill the following steps:

1- Define the project goals and customer (external and internal)
deliverables.

2- Control future performance so improved process doesn't degrade.

3- Measure the process so that to determine current performance and
quantify the problem.

4- Analyze and determine the root cause(s) of the defects.

5- Improve the process by eliminating the defects.


And you have to know that those steps are also important steps toward attaining ISO 9000 certification, and notice that you can use SPC(Statistical process control) and the control charts on step [4] and step [5] above.

Other than that i have just read the following interesting important paper about SPC(Statistical process control) that explains all the process of SPC(Statistical process control), so i invite you to read it
carefully:

https://owic.oregonstate.edu/sites/default/files/pubs/EM8733.pdf

So as you notice in the above paper that the central limit theorem
in mathematics is so important, but notice carefully that the necessary and important condition so that the central limit theorem works is that you have to use independent and random variables, and notice in the above paper that you have to do two things and it's that you have to reduce or eliminate the defects and you have to control the "variability" of the defects, and this is why the paper is talking about how to construct a control chart. Other than that the central limit theorem is not only related to SPC(Statistical process control), but it is also related to PERT and my PERT++ software project below, and notice that in my software project below that is called PERT++, i have provided you with two ways of how to estimate the critical path, first, by the way of CPM(Critical Path Method) that shows all the arcs of the estimate of the critical path, and the second way is by the way of the central limit theorem by using the inverse normal distribution function, and you have to provide my software project that is called PERT++ with three types of estimates that are the following:

Optimistic time - generally the shortest time in which the activity
can be completed. It is common practice to specify optimistic times
to be three standard deviations from the mean so that there is
approximately a 1% chance that the activity will be completed within
the optimistic time.

Most likely time - the completion time having the highest
probability. Note that this time is different from the expected time.

Pessimistic time - the longest time that an activity might require. Three standard deviations from the mean is commonly used for the pessimistic time.

And you can download my PERT++ from reading my following below thoughts:

More of my philosophy about the central limit theorem and about my PERT++ and more..

The central limit theorem states that the sampling distribution of the mean of any independent, random variable will be normal or nearly normal, if the sample size is large enough.

How large is "large enough"?

In practice, some statisticians say that a sample size of 30 is large enough when the population distribution is roughly bell-shaped. Others recommend a sample size of at least 40. But if the original population is distinctly not normal (e.g., is badly skewed, has multiple peaks, and/or has outliers), researchers like the sample size to be even larger. So i invite you to read my following thoughts about my software
project that is called PERT++, and notice that the PERT networks are referred to by some researchers as "probabilistic activity networks" (PAN) because the duration of some or all of the arcs are independent random variables with known probability distribution functions, and have finite ranges. So PERT uses the central limit theorem (CLT) to find the expected project duration.

And as you are noticing this Central Limit Theorem is also so important
for quality control, read the following to notice it(I also understood Statistical Process Control (SPC)):

An Introduction to Statistical Process Control (SPC)

https://www.engineering.com/AdvancedManufacturing/ArticleID/19494/An-Introduction-to-Statistical-Process-Control-SPC.aspx

Also PERT networks are referred to by some researchers as "probabilistic activity networks" (PAN) because the duration of some or all of the arcs are independent random variables with known probability distribution functions, and have finite ranges. So PERT uses the central limit theorem (CLT) to find the expected project duration.

So, i have designed and implemented my PERT++ that that is important for quality, please read about it and download it from my website here:

https://sites.google.com/site/scalable68/pert-an-enhanced-edition-of-the-program-or-project-evaluation-and-review-technique-that-includes-statistical-pert-in-delphi-and-freepascal

---


So I have provided you in my PERT++ with the following functions:


function NormalDistA (const Mean, StdDev, AVal, BVal: Extended): Single;

function NormalDistP (const Mean, StdDev, AVal: Extended): Single;

function InvNormalDist(const Mean, StdDev, PVal: Extended; const Less: Boolean): Extended;

For NormalDistA() or NormalDistP(), you pass the best estimate of completion time to Mean, and you pass the critical path standard deviation to StdDev, and you will get the probability of the value Aval or the probability between the values of Aval and Bval.

For InvNormalDist(), you pass the best estimate of completion time to Mean, and you pass the critical path standard deviation to StdDev, and you will get the length of the critical path of the probability PVal, and when Less is TRUE, you will obtain a cumulative distribution.


So as you are noticing from my above thoughts that since PERT networks are referred to by some researchers as "probabilistic activity networks" (PAN) because the duration of some or all of the arcs are independent random variables with known probability distribution functions, and have finite ranges. So PERT uses the central limit theorem (CLT) to find the expected project duration. So then you have to use my above functions
that are Normal distribution and inverse normal distribution functions, please look at my demo inside my zip file to understand better how i am doing it:

You can download and read about my PERT++ from my website here:

https://sites.google.com/site/scalable68/pert-an-enhanced-edition-of-the-program-or-project-evaluation-and-review-technique-that-includes-statistical-pert-in-delphi-and-freepascal

I think i am smart and i invite you to read carefully the following webpage of Alan Robinson Professor of Operations Management at University of Massachusetts and that is a full-time professor at the Isenberg School of Management of UMass and a consultant and book author specializing in managing ideas (idea-generation and idea-driven organization) and building high-performance organizations, creativity, innovation, quality, and lean management:

https://www.simplilearn.com/pgp-lean-six-sigma-certification-training-course?utm_source=google&utm_medium=cpc&utm_term=&utm_content=11174393172-108220153863-506962883161&utm_device=c&utm_campaign=Display-MQL-DigitalOperationsCluster-PG-QM-CLSS-UMass-YTVideoInstreamCustomIntent-US-Main-AllDevice-adgroup-QM-Desktop-CI&gclid=Cj0KCQiA3rKQBhCNARIsACUEW_ZGLHcUP2htLdQo46zP6Eo2-vX0MQYvc-o6GQP55638Up4tex85RBEaArn9EALw_wcB


And notice in the above webpage of the professor, that he is giving Post Graduate Program in Lean Six Sigma and on agile methodology, and i think that this Post Graduate Program is easy for me since i am really smart and i can easily understand lean Six Sigma or Six Sigma and i can easily understand agile methodology, and notice that i am in my below thoughts also explaining much more smartly what is agile methodology, and i think that the more difficult part of Six Sigma or lean Six Sigma is to understand the central limit theorem and to understand what is SPC(Statistical quality control) and how to use the control charts so that to control the variability of the defects, and notice that i am talking about it in my below thoughts, but i think that the rest of lean Six Sigma and Six Sigma is easy for me.

Click here to read the complete article
1
rocksolid light 0.7.2
clearneti2ptor