Rocksolid Light

Welcome to Rocksolid Light

register   nodelist   faq  

rocksolid / rocksolid.shared.general / Re: The assumptions about climate change are wrong so far

o Re: The assumptions about climate change are wrong so far3248238482

Subject: Re: The assumptions about climate change are wrong so far
From: (3248238482)
Newsgroups: rocksolid.shared.general
Organization: def5
Date: Thu, 20 Jun 2019 03:20 UTC

a really interesting interview:

 February 27, 2011
This Week's Finds (Week 310)
John Baez
I first encountered Gregory Benford through his science fiction novels: my favorite is probably In the Ocean of Night.

Later I learned that he's an astrophysicist at U.C. Irvine, not too far from Riverside where I teach. But I only actually met him through my wife. She sometimes teaches courses on science fiction, and like Benford, she has some involvement with the Eaton Collection at U.C. Riverside—the largest publicly accessible SF library in the world. So, I was bound to eventually bump into him.

When I did, I learned about his work on electromagnetic filaments near the center of our galaxy—see "week252" for more. I also learned he was seriously interested in climate change, and that he was going to the Asilomar International Conference on Climate Intervention Technologies—a controversial get-together designed to hammer out some policies for research on geoengineering.

Benford is a friendly but no-nonsense guy. Recently he sent me an email mentioning my blog, and said: "Your discussions on what to do are good, though general, while what we need is specifics NOW." Since I'd been meaning to interview him for a while, this gave me the perfect opening.

JB: You've been thinking about the future for a long time, since that's part of your job as a science fiction writer. For example, you've written a whole series about the expansion of human life through the galaxy. From this grand perspective, global warming might seem like an annoying little road-bump before the ride even gets started. How did you get interested in global warming?

GB: I liked writing about the far horizons of our human prospect; it's fun. But to get even above the envelope of our atmosphere in a sustained way, we have to stabilize the planet. Before we take on the galaxy, let's do a smaller problem.

JB: Good point. We can't all ship on out of here, and the way it's going now, maybe none of us will, unless we get our act together.

Can you remember something that made you think "Wow, global warming is a really serious problem"? As you know, not everyone is convinced yet.

GB: I looked at the migration of animals and then the steadily northward march of trees. They don't read newspapers—the trees become newspapers—so their opinion matters more. Plus the retreat of the Arctic Sea ice in summer, the region of the world most endangered by the changes coming. I first focused on carbon capture using the CROPS method. I'm the guy who first proposed screening the Arctic with aerosols to cool it in summer.

JB: Let's talk about each in turn. "CROPS" stands for Crop Residue Oceanic Permanent Sequestration. The idea sounds pretty simple: dump a lot of crop residues—stalks, leaves and stuff—on the deep ocean floor. That way, we'd be letting plants suck CO2 out of the atmosphere for us.

GB: Agriculture is the world's biggest industry; we should take advantage of it. That's what gave Bob Metzger and me the idea: collect farm waste and sink it to the bottom of the ocean, whence it shall not return for 1000 years. Cheap, easy, doable right now.

JB: But we have to think about what'll happen if we dump all that stuff into the ocean, right? After all, the USA alone creates half a gigatonne of crop residues each year, and world-wide it's ten times that. I'm getting these numbers from your papers:

    Robert A. Metzger and Gregory Benford, Sequestering of atmospheric carbon through permanent disposal of crop residue, Climatic Change 49 (2001), 11-19.

    Stuart E. Strand and Gregory Benford, Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments, Environmental Science and Technology 43 (2009), 1000-1007.

Since we're burning over 7 gigatonnes of carbon each year, burying 5 gigatonnes of crop waste is just enough to make a serious dent in our carbon footprint. But what'll that much junk do at the bottom of the ocean?

GB: We're testing the chemistry of how farm waste interacts with deep ocean sites offshore Monterey Bay right now. Here's a picture of a bale 3.2 km down:

JB: I'm sure our audience will have more questions about this... but the answers to some are in your papers, and I want to spend a bit more time on your proposal to screen the Arctic. There's a good summary here:

    Gregory Benford, Climate controls, Reason Magazine, November 1997.

But in brief, it sounds like you want to test the results of spraying a lot of micron-sized dust into the atmosphere above the Arctic Sea during the summer. You suggest diatomaceous earth as an option, because it's chemically inert: just silica. How would the test work, exactly, and what would you hope to learn?

GB: The US has inflight refueling aircraft such as the KC-10 Extender that with minor changes spread aerosols at relevant altitudes, and pilots who know how to fly big sausages filled with fluids.

Rather than diatomaceous earth, I now think ordinary SO2 or H2S will work, if there's enough water at the relevant altitudes. Turns out the pollutant issue is minor, since it would be only a percent or so of the SO2 already in the Arctic troposphere. The point is to spread aerosols to diminish sunlight and look for signals of less sunlight on the ground, changes in sea ice loss rates in summer, etc. It's hard to do a weak experiment and be sure you see a signal. Doing regional experiments helps, so you can see a signal before the aerosols spread much. It's a first step, an in-principle experiment.

Simulations show it can stop the sea ice retreat. Many fear if we lose the sea ice in summer ocean currents may alter; nobody really knows. We do know that the tundra is softening as it thaws, making roads impassible and shifting many wildlife patterns, with unforeseen long term effects. Cooling the Arctic back to, say, the 1950 summer temperature range would cost maybe $300 million/year, i.e., nothing. Simulations show to do this globally, offsetting say CO2 at 500 ppm, might cost a few billion dollars per year. That doesn't help ocean acidification, but it's a start on the temperature problem.

JB: There's an interesting blog on Arctic political, military and business developments:

    Anatoly Karlin, Arctic Progress.

Here's the overview:

    Today, global warming is kick-starting Arctic history. The accelerating melting of Arctic sea ice promises to open up circumpolar shipping routes, halving the time needed for container ships and tankers to travel between Europe and East Asia. As the ice and permafrost retreat, the physical infrastructure of industrial civilization will overspread the region [...]. The four major populated regions encircling the Arctic Ocean—Alaska, Russia, Canada, Scandinavia (ARCS)—are all set for massive economic expansion in the decades ahead. But the flowering of industrial civilization's fruit in the thawing Far North carries within it the seeds of its perils. The opening of the Arctic is making border disputes more serious and spurring Russian and Canadian military buildups in the region. The warming of the Arctic could also accelerate global warming—and not just through the increased economic activity and hydrocarbons production. One disturbing possibility is that the melting of the Siberian permafrost will release vast amounts of methane, a greenhouse gas that is far more potent than CO2, into the atmosphere, and tip the world into runaway climate change. But anyway, unlike many people, I'm not mentioning risks associated with geoengineering in order to instantly foreclose discussion of it, because I know there are also risks associated with not doing it. If we rule out doing anything really new because it's too expensive or too risky, we might wind up locking ourselves in a "business as usual" scenario. And that could be even more risky—and perhaps ultimately more expensive as well.

GB: Yes, no end of problems. Most impressive is how they look like a descending spiral, self-reinforcing.

Certainly countries now scramble for Arctic resources, trade routes opened by thawing—all likely to become hotly contested strategic assets. So too melting Himalayan glaciers can perhaps trigger "water wars" in Asia—especially India and China, two vast lands of very different cultures. Then, coming on later, come rising sea levels. Florida starts to go away. The list is endless and therefore uninteresting. We all saturate.

So droughts, floods, desertification, hammering weather events—they draw ever less attention as they grow more common. Maybe Darfur is the first "climate war." It's plausible.

The Arctic is the canary in the climate coalmine. Cutting CO2 emissions will take far too long to significantly affect the sea ice. Permafrost melts there, giving additional positive feedback. Methane release from the not-so-perma-frost is the most dangerous amplifying feedback in the entire carbon cycle. As John Nissen has repeatedly called attention to, the permafrost permamelt holds a staggering 1.5 trillion tons of frozen carbon, about twice as much carbon as is in the atmosphere. Much would emerge as methane. Methane is 25 times as potent a heat-trapping gas as CO2 over a century, and 72 times as potent over the first 20 years! The carbon is locked in a freezer. Yet that's the part of the planet warming up the fastest. Really bad news:

    Kevin Schaefer, Tingjun Zhang, Lori Bruhwiler and Andrew P. Barrett, Amount and timing of permafrost carbon release in response to climate warming, Tellus, 15 February 2011.

    Abstract: The thaw and release of carbon currently frozen in permafrost will increase atmospheric CO2 concentrations and amplify surface warming to initiate a positive permafrost carbon feedback (PCF) on climate. We use surface weather from three global climate models based on the moderate warming, A1B Intergovernmental Panel on Climate Change emissions scenario and the SiBCASA land surface model to estimate the strength and timing of the PCF and associated uncertainty. By 2200, we predict a 29-59% decrease in permafrost area and a 53-97 cm increase in active layer thickness. By 2200, the PCF strength in terms of cumulative permafrost carbon flux to the atmosphere is 190±64 gigatonnes of carbon. This estimate may be low because it does not account for amplified surface warming due to the PCF itself and excludes some discontinuous permafrost regions where SiBCASA did not simulate permafrost. We predict that the PCF will change the arctic from a carbon sink to a source after the mid-2020s and is strong enough to cancel 42-88% of the total global land sink. The thaw and decay of permafrost carbon is irreversible and accounting for the PCF will require larger reductions in fossil

Click here to read the complete article
rocksolid light 0.6.5e
clearnet i2p tor