Rocksolid Light

Welcome to novaBBS (click a section below)

mail  files  register  newsreader  groups  login

Message-ID:  

"If the code and the comments disagree, then both are probably wrong." -- Norm Schryer


tech / sci.physics.relativity / I found one spherically symmetric solution of Einstein's vacuum field equations

SubjectAuthor
* I found one spherically symmetric solution of Einstein's vacuum field equationsHannu Poropudas
+* Re: I found one spherically symmetric solution of Einstein's vacuumJanPB
|`- Re: I found one spherically symmetric solution of Einstein's vacuumRoss Finlayson
+- Re: I found one spherically symmetric solution of Einstein's vacuumpatdolan
`* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
 `* Re: I found one spherically symmetric solution of Einstein's vacuum field equatiJanPB
  +- Re: I found one spherically symmetric solution of Einstein's vacuumReinel Badoff
  `* Re: I found one spherically symmetric solution of Einstein's vacuum field equatiHannu Poropudas
   +* Re: I found one spherically symmetric solution of Einstein's vacuumRoss Finlayson
   |`- Re: I found one spherically symmetric solution of Einstein's vacuummitchr...@gmail.com
   `* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
    `* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     +* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     |`* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     | `* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     |  +- Re: I found one spherically symmetric solution of Einstein's vacuummitchr...@gmail.com
     |  +* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     |  |+- Re: I found one spherically symmetric solution of Einstein's vacuumRoss Finlayson
     |  |`* Re: I found one spherically symmetric solution of Einstein's vacuumpatdolan
     |  | `* Re: I found one spherically symmetric solution of Einstein's vacuumRoss Finlayson
     |  |  `* Re: I found one spherically symmetric solution of Einstein's vacuumpatdolan
     |  |   `- Re: I found one spherically symmetric solution of Einstein's vacuummitchr...@gmail.com
     |  `* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     |   `* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     |    +* Re: I found one spherically symmetric solution of Einstein's vacuumpatdolan
     |    |`* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     |    | `- Re: I found one spherically symmetric solution of Einstein's vacuumpatdolan
     |    `* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     |     `* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     |      `* Re: I found one spherically symmetric solution of Einstein's vacuumRoss Finlayson
     |       `* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     |        `- Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     `* Re: I found one spherically symmetric solution of Einstein's vacuumJanPB
      `- Re: I found one spherically symmetric solution of Einstein's vacuum field equatiThe Starmaker

Pages:12
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<4c87acdf-7554-436d-a6d8-2f1693cbc4ddn@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127450&group=sci.physics.relativity#127450

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:a05:620a:1726:b0:778:9747:99e3 with SMTP id az38-20020a05620a172600b00778974799e3mr170399qkb.6.1698662104246;
Mon, 30 Oct 2023 03:35:04 -0700 (PDT)
X-Received: by 2002:a05:6870:f624:b0:1e9:8ae7:cb88 with SMTP id
ek36-20020a056870f62400b001e98ae7cb88mr4560117oab.5.1698662103901; Mon, 30
Oct 2023 03:35:03 -0700 (PDT)
Path: i2pn2.org!rocksolid2!news.neodome.net!feeder1.feed.usenet.farm!feed.usenet.farm!peer03.ams4!peer.am4.highwinds-media.com!peer02.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Mon, 30 Oct 2023 03:35:03 -0700 (PDT)
In-Reply-To: <b19815d8-0902-44f3-9861-2e595fbc4be8n@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=85.194.208.161; posting-account=1H9XwwoAAADT6KUHcLIWMoply9bM_d5b
NNTP-Posting-Host: 85.194.208.161
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
<83c1577a-1061-46c8-baed-693131429119n@googlegroups.com> <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
<b19815d8-0902-44f3-9861-2e595fbc4be8n@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <4c87acdf-7554-436d-a6d8-2f1693cbc4ddn@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: haporop...@gmail.com (Hannu Poropudas)
Injection-Date: Mon, 30 Oct 2023 10:35:04 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 16000
 by: Hannu Poropudas - Mon, 30 Oct 2023 10:35 UTC

maanantai 30. lokakuuta 2023 klo 9.59.22 UTC+2 Hannu Poropudas kirjoitti:
> perjantai 27. lokakuuta 2023 klo 10.46.55 UTC+3 Hannu Poropudas kirjoitti:
> > torstai 26. lokakuuta 2023 klo 11.04.40 UTC+3 Hannu Poropudas kirjoitti:
> > > keskiviikko 25. lokakuuta 2023 klo 14.37.35 UTC+3 Hannu Poropudas kirjoitti:
> > > > keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > > tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > > > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > Spherically symmetric metrics which satisfies
> > > > > > > > > > Einstein's vacuum field equations.
> > > > > > > > > >
> > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > >
> > > > > > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > > > > > >
> > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > >
> > > > > > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > > > > > >
> > > > > > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > > > > > >
> > > > > > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > > > > > >
> > > > > > > > > > There exist a book called something like
> > > > > > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > > > > > which have about 740 pages and
> > > > > > > > > > I don't know if this solution is among them?
> > > > > > > > > >
> > > > > > > > > > Three singularity points of the metrics are the following:
> > > > > > > > > >
> > > > > > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > > > > > >
> > > > > > > > > >
> > > > > > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > > > > > >
> > > > > > > > > > Reference:
> > > > > > > > > > Tolman R. C., 1934.
> > > > > > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > > > > > >
> > > > > > > > > > Best Regrads,
> > > > > > > > > >
> > > > > > > > > > Hannu Poropudas
> > > > > > > > > >
> > > > > > > > > > Kolamäentie 9E
> > > > > > > > > > 90900 Kiiminki / Oulu
> > > > > > > > > > Finland
> > > > > > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > > > > > some time ago in this sci.physics.relativity Google Group.. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > > > > > >
> > > > > > > > > MG = 6.292090968*10^11,
> > > > > > > > > 2*MG=1.258418194*10^12.
> > > > > > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > > > > > >
> > > > > > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > > > > > +,- sign for integral
> > > > > > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > > > > > >
> > > > > > > > > and
> > > > > > > > >
> > > > > > > > > -1.103327381*10^12<=rr<=0
> > > > > > > > > +,- sign for integral
> > > > > > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > > > > > >
> > > > > > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > > > > > Real parts = 0 in these integrals.
> > > > > > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > > > > > How to interpret these Imaginary angle plots?
> > > > > > > > >
> > > > > > > > > Best Regards,
> > > > > > > > > Hannu Poropudas
> > > > > > > > Your solution is either:
> > > > > > > >
> > > > > > > > (a) incorrect, or:
> > > > > > > >
> > > > > > > > (b) isometric to Schwarzschild's.
> > > > > > > >
> > > > > > > > Don't waste your time.
> > > > > > > >
> > > > > > > > --
> > > > > > > > Jan
> > > > > > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > > > > > >
> > > > > > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > > > > > >
> > > > > > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > > > > > but you are correct in point of view that it may not be physically acceptable solution
> > > > > > > of these equations at our present orthodoxic physical knowledge.
> > > > > > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > > > > > >
> > > > > > > There exist also few other integration constants from Euler-Largrange equations,
> > > > > > > but I have selected randomly only one couple of them in this example calculation.
> > > > > > >
> > > > > > > Hannu
> > > > > > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > > > > > constants from Euler-Largrange equations:
> > > > > >
> > > > > > I mark now for convenience T = coordinate time and t = proper time.
> > > > > >
> > > > > > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > > > > > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > > > > > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> > > > > >
> > > > > > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > > > > > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > > > > > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > > > > > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > > > > > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> > > > > >
> > > > > > K1 = +,- 0.7072727132*I,
> > > > > > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> > > > > >
> > > > > > And I selected here randomly as an example two constants of integration
> > > > > > in this my two analytic solutions calculation:
> > > > > >
> > > > > > K1 = - 0.7072727132*I
> > > > > > and
> > > > > > K2 = 0.5943942676 - 0.5943942676*I
> > > > > >
> > > > > > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > > > > > (Phi(P) is pure imaginary angle and r(P) is real distance.
> > > > > > Phiphi(P) is pure imaginary angle and rr(P) is real distance).
> > > > > >
> > > > > > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > > > > > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > > > > > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> > > > > >
> > > > > > Those both plots resemble somehow pendulum orbit ?
> > > > > >
> > > > > > I have NO physical interpretations of these solutions
> > > > > > and I think that these have NO real physical applications.
> > > > > >
> > > > > > Hannu Poropudas
> > > > > I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
> > > > >
> > > > > It seems to me that this integral is too complicated to calculate analytically, but it could be so
> > > > > with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> > > > > in this above case that the coordinate time T could be two dimensional complex number ?
> > > > >
> > > > > This also seems to support what I said above.
> > > > > I have NO physical interpretations of these solutions
> > > > > and I think at the moment that these have NO real physical applications.
> > > > >
> > > > > And we should study two dimensional complex mathematics of two dimensional
> > > > > coordinate time (T) in this complicated integral better,
> > > > > if we try to better understand this situation,
> > > > > if this would be sensible at all ?
> > > > >
> > > > > Best Regards,
> > > > > Hannu Poropudas
> > > > CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
> > > > Sorry that I confused these two letters.
> > > >
> > > > Hannu
> > > I found one interesting reference, which show that there
> > > are really only few astrophysically significant exact solutions to Einstein's field equations.
> > >
> > > Ishak, M. 2015.
> > > Exact Solutions to Einstein's Equations in Astrophysics.
> > > Texas Symposium on Relativistic Astrophysics, Geneva 2015.
> > > 33 pages.
> > > https://personal.utdallas.edu/~mishak/ExactSolutionsInAstrophysics_Ishak_Final.pdf
> > >
> > > Please take a look.
> > >
> > > Best Regards,
> > > Hannu Poropudas
> > In order to me more mathematically complete I calculate also
> > approximate proper time t integral (primitive function)
> > and plotted both real part and imaginary part of it.
> > I have NO interpretations of these.
> >
> > ># Approximate proper time t integral calculated HP 27.10.2023
> > ># REMARK: My letter convenience t=proper time T=coordinate time
> > ># Real part and Imaginary part plotted
> > >#K3:=0;
> > >#K1 := -0.7072727132*I;
> > >#K2 := 0.5943942676-0.5943942676*I;
> > >#m := MG;
> > >#MG := 0.6292090968e12;
> > >#2*MG := 0.1258418194e13;
> > >#a2<=r<=a1, definition area
> > >#a2=2.720522631*10^11, a1=8.306841627*10^11
> >
> > >#Real part of primitive function t approx.
> > ># Series approx at r = MG up to 7 degree.
> +,- sign for REIF(r)
> > >REIF:=r->-0.9292411964e-8*r+0.8717127610e-20*r^2+0.4446277653e-31*(r-0.6292090968e12)^3+0.2329675135e-42*(r-0.6292090968e12)^4+0.3071201158e-47*(r-0.6292090968e12)^5+0.2827253683e-58*(r-0.6292090968e12)^6+0.2065510967e-69*(r-0.6292090968e12)^7;
> >
> > >#Imaginary part of primitive function t approx.
> > >># Series approx at r = MG up to 7 degree.
> +,- sign for IMIF(r)
> > >IMIF:=r->-0.2217185446e-7*r+0.3637453960e-19*r^2+0.1018586871e-30*(r-0.6292090968e12)^3+0.3376062792e-42*(r-0.6292090968e12)^4+0.4794788388e-47*(r-0.6292090968e12)^5+0.2475402813e-58*(r-0.6292090968e12)^6+0.1233132761e-69*(r-0.6292090968e12)^7;
> >
> > > #a2<=r<=a1, definition area
> > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > #MG := 0.6292090968e12;
> > > #2*MG := 0.1258418194e13;
> >
> +,- sign for REIF(r)
> > >plot(REIF(r),r=2.720522631*10^11..8.306841627*10^11);
> >
> > > #a2<=r<=a1, definition area
> > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > #MG := 0.6292090968e12;
> > > #2*MG := 0.1258418194e13;
> >
> +,- sign for IMIF(r)
> > >plot(IMIF(r),r=2.720522631*10^11..8.306841627*10^11);
> >
> >
> > Best Regards,
> > Hannu Poropudas


Click here to read the complete article
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<5cedd279-f229-45cf-9d69-a0123015cd17n@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127451&group=sci.physics.relativity#127451

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:ac8:7210:0:b0:419:b54d:99b4 with SMTP id a16-20020ac87210000000b00419b54d99b4mr178551qtp.13.1698686635916;
Mon, 30 Oct 2023 10:23:55 -0700 (PDT)
X-Received: by 2002:a4a:de02:0:b0:56d:72ca:c4dc with SMTP id
y2-20020a4ade02000000b0056d72cac4dcmr96097oot.0.1698686635652; Mon, 30 Oct
2023 10:23:55 -0700 (PDT)
Path: i2pn2.org!i2pn.org!news.neodome.net!feeder1.feed.usenet.farm!feed.usenet.farm!peer03.ams4!peer.am4.highwinds-media.com!peer02.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Mon, 30 Oct 2023 10:23:55 -0700 (PDT)
In-Reply-To: <4c87acdf-7554-436d-a6d8-2f1693cbc4ddn@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=2601:602:9b00:7c40:6c5d:9b79:1271:b3bd;
posting-account=9sfziQoAAAD_UD5NP4mC4DjcYPHqoIUc
NNTP-Posting-Host: 2601:602:9b00:7c40:6c5d:9b79:1271:b3bd
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
<83c1577a-1061-46c8-baed-693131429119n@googlegroups.com> <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
<b19815d8-0902-44f3-9861-2e595fbc4be8n@googlegroups.com> <4c87acdf-7554-436d-a6d8-2f1693cbc4ddn@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <5cedd279-f229-45cf-9d69-a0123015cd17n@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: patdo...@comcast.net (patdolan)
Injection-Date: Mon, 30 Oct 2023 17:23:55 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 16983
 by: patdolan - Mon, 30 Oct 2023 17:23 UTC

On Monday, October 30, 2023 at 3:35:05 AM UTC-7, Hannu Poropudas wrote:
> maanantai 30. lokakuuta 2023 klo 9.59.22 UTC+2 Hannu Poropudas kirjoitti:
> > perjantai 27. lokakuuta 2023 klo 10.46.55 UTC+3 Hannu Poropudas kirjoitti:
> > > torstai 26. lokakuuta 2023 klo 11.04.40 UTC+3 Hannu Poropudas kirjoitti:
> > > > keskiviikko 25. lokakuuta 2023 klo 14.37.35 UTC+3 Hannu Poropudas kirjoitti:
> > > > > keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > > > > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > > > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > > Spherically symmetric metrics which satisfies
> > > > > > > > > > > Einstein's vacuum field equations.
> > > > > > > > > > >
> > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > >
> > > > > > > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > > > > > > >
> > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > >
> > > > > > > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > > > > > > >
> > > > > > > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > > > > > > >
> > > > > > > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > > > > > > >
> > > > > > > > > > > There exist a book called something like
> > > > > > > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > > > > > > which have about 740 pages and
> > > > > > > > > > > I don't know if this solution is among them?
> > > > > > > > > > >
> > > > > > > > > > > Three singularity points of the metrics are the following:
> > > > > > > > > > >
> > > > > > > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > > > > > > >
> > > > > > > > > > >
> > > > > > > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > > > > > > >
> > > > > > > > > > > Reference:
> > > > > > > > > > > Tolman R. C., 1934.
> > > > > > > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > > > > > > >
> > > > > > > > > > > Best Regrads,
> > > > > > > > > > >
> > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > >
> > > > > > > > > > > Kolamäentie 9E
> > > > > > > > > > > 90900 Kiiminki / Oulu
> > > > > > > > > > > Finland
> > > > > > > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > > > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > > > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > > > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > > > > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > > > > > > >
> > > > > > > > > > MG = 6.292090968*10^11,
> > > > > > > > > > 2*MG=1.258418194*10^12.
> > > > > > > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > > > > > > >
> > > > > > > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > > > > > > +,- sign for integral
> > > > > > > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > > > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > > > > > > >
> > > > > > > > > > and
> > > > > > > > > >
> > > > > > > > > > -1.103327381*10^12<=rr<=0
> > > > > > > > > > +,- sign for integral
> > > > > > > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > > > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1..103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > > > > > > >
> > > > > > > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > > > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > > > > > > Real parts = 0 in these integrals.
> > > > > > > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > > > > > > How to interpret these Imaginary angle plots?
> > > > > > > > > >
> > > > > > > > > > Best Regards,
> > > > > > > > > > Hannu Poropudas
> > > > > > > > > Your solution is either:
> > > > > > > > >
> > > > > > > > > (a) incorrect, or:
> > > > > > > > >
> > > > > > > > > (b) isometric to Schwarzschild's.
> > > > > > > > >
> > > > > > > > > Don't waste your time.
> > > > > > > > >
> > > > > > > > > --
> > > > > > > > > Jan
> > > > > > > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > > > > > > >
> > > > > > > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > > > > > > >
> > > > > > > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > > > > > > but you are correct in point of view that it may not be physically acceptable solution
> > > > > > > > of these equations at our present orthodoxic physical knowledge.
> > > > > > > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > > > > > > >
> > > > > > > > There exist also few other integration constants from Euler-Largrange equations,
> > > > > > > > but I have selected randomly only one couple of them in this example calculation.
> > > > > > > >
> > > > > > > > Hannu
> > > > > > > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > > > > > > constants from Euler-Largrange equations:
> > > > > > >
> > > > > > > I mark now for convenience T = coordinate time and t = proper time.
> > > > > > >
> > > > > > > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > > > > > > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > > > > > > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> > > > > > >
> > > > > > > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > > > > > > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > > > > > > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > > > > > > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > > > > > > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> > > > > > >
> > > > > > > K1 = +,- 0.7072727132*I,
> > > > > > > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> > > > > > >
> > > > > > > And I selected here randomly as an example two constants of integration
> > > > > > > in this my two analytic solutions calculation:
> > > > > > >
> > > > > > > K1 = - 0.7072727132*I
> > > > > > > and
> > > > > > > K2 = 0.5943942676 - 0.5943942676*I
> > > > > > >
> > > > > > > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > > > > > > (Phi(P) is pure imaginary angle and r(P) is real distance.
> > > > > > > Phiphi(P) is pure imaginary angle and rr(P) is real distance)..
> > > > > > >
> > > > > > > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > > > > > > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > > > > > > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> > > > > > >
> > > > > > > Those both plots resemble somehow pendulum orbit ?
> > > > > > >
> > > > > > > I have NO physical interpretations of these solutions
> > > > > > > and I think that these have NO real physical applications.
> > > > > > >
> > > > > > > Hannu Poropudas
> > > > > > I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
> > > > > >
> > > > > > It seems to me that this integral is too complicated to calculate analytically, but it could be so
> > > > > > with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> > > > > > in this above case that the coordinate time T could be two dimensional complex number ?
> > > > > >
> > > > > > This also seems to support what I said above.
> > > > > > I have NO physical interpretations of these solutions
> > > > > > and I think at the moment that these have NO real physical applications.
> > > > > >
> > > > > > And we should study two dimensional complex mathematics of two dimensional
> > > > > > coordinate time (T) in this complicated integral better,
> > > > > > if we try to better understand this situation,
> > > > > > if this would be sensible at all ?
> > > > > >
> > > > > > Best Regards,
> > > > > > Hannu Poropudas
> > > > > CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
> > > > > Sorry that I confused these two letters.
> > > > >
> > > > > Hannu
> > > > I found one interesting reference, which show that there
> > > > are really only few astrophysically significant exact solutions to Einstein's field equations.
> > > >
> > > > Ishak, M. 2015.
> > > > Exact Solutions to Einstein's Equations in Astrophysics.
> > > > Texas Symposium on Relativistic Astrophysics, Geneva 2015.
> > > > 33 pages.
> > > > https://personal.utdallas.edu/~mishak/ExactSolutionsInAstrophysics_Ishak_Final.pdf
> > > >
> > > > Please take a look.
> > > >
> > > > Best Regards,
> > > > Hannu Poropudas
> > > In order to me more mathematically complete I calculate also
> > > approximate proper time t integral (primitive function)
> > > and plotted both real part and imaginary part of it.
> > > I have NO interpretations of these.
> > >
> > > ># Approximate proper time t integral calculated HP 27.10.2023
> > > ># REMARK: My letter convenience t=proper time T=coordinate time
> > > ># Real part and Imaginary part plotted
> > > >#K3:=0;
> > > >#K1 := -0.7072727132*I;
> > > >#K2 := 0.5943942676-0.5943942676*I;
> > > >#m := MG;
> > > >#MG := 0.6292090968e12;
> > > >#2*MG := 0.1258418194e13;
> > > >#a2<=r<=a1, definition area
> > > >#a2=2.720522631*10^11, a1=8.306841627*10^11
> > >
> > > >#Real part of primitive function t approx.
> > > ># Series approx at r = MG up to 7 degree.
> > +,- sign for REIF(r)
> > > >REIF:=r->-0.9292411964e-8*r+0.8717127610e-20*r^2+0.4446277653e-31*(r-0.6292090968e12)^3+0.2329675135e-42*(r-0.6292090968e12)^4+0.3071201158e-47*(r-0.6292090968e12)^5+0.2827253683e-58*(r-0.6292090968e12)^6+0.2065510967e-69*(r-0.6292090968e12)^7;
> > >
> > > >#Imaginary part of primitive function t approx.
> > > >># Series approx at r = MG up to 7 degree.
> > +,- sign for IMIF(r)
> > > >IMIF:=r->-0.2217185446e-7*r+0.3637453960e-19*r^2+0.1018586871e-30*(r-0.6292090968e12)^3+0.3376062792e-42*(r-0.6292090968e12)^4+0.4794788388e-47*(r-0.6292090968e12)^5+0.2475402813e-58*(r-0.6292090968e12)^6+0.1233132761e-69*(r-0.6292090968e12)^7;
> > >
> > > > #a2<=r<=a1, definition area
> > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > #MG := 0.6292090968e12;
> > > > #2*MG := 0.1258418194e13;
> > >
> > +,- sign for REIF(r)
> > > >plot(REIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > >
> > > > #a2<=r<=a1, definition area
> > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > #MG := 0.6292090968e12;
> > > > #2*MG := 0.1258418194e13;
> > >
> > +,- sign for IMIF(r)
> > > >plot(IMIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > >
> > >
> > > Best Regards,
> > > Hannu Poropudas
> I calculated also coordinate time T series approximation up to 7 degree at r=MG,
> (REMARK: This is preliminary calculation I have not rechecked it yet):
>
> If my approximate calculations are correct, then it is possible to calculate more
> "quantities" in this strange black hole of two event horizons space-time of mine,
> if this is sensible at all?
>
> ># Two branches of coordinate time T series approx.30.10.2023 H.P.
>
> ># This coordinate time T is also complex number with two branches
> ># (real and Imaginary)
>
> >#Coordinate time T series approx. up to 7 degree
> ># function-(series approx function), not integrated here
> >#(+)branch only used error estimation (compare proper time case)
>
> ># +,- formula (Primitive function, Real part)
>
> >REIG:=r->-2.851064818*ln(abs(r-0.6292090968e12))-.8288703850*(1-csgn(r-0.6292090968e12))*Pi+0.3330424925e12/(r-0.6292090968e12)-0.2939012715e-11*r;
>
> ># error estimation max positive side about 8.3*10^(-9)
> ># error estimation max abs negative side about -4.2*10^(-9)
> ># Both max are at r=MG, other definition area error = about 0
>
> ># +,- formula (Primitive function, Imaginary part)
>
> >IMIG:=r->-1.425532409*(1-csgn(r-0.6292090968e12))*Pi+1.657740770*ln(abs(r-0.6292090968e12))-0.2312741379e12/(r-0.6292090968e12)+0.1298075147e-11*r;
>
> ># error estimation max positive side about 3.2*10^(-9)
> ># error estimation max abs negative side about -6.4*10^(-9)
> ># Both max are at r=MG, other definition area error = about 0
>
> Best Regards,
> Hannu Poropudas


Click here to read the complete article
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<52bf1fa1-f480-411f-b357-7f09c62a6582n@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127474&group=sci.physics.relativity#127474

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:a05:622a:601d:b0:41b:8141:9137 with SMTP id he29-20020a05622a601d00b0041b81419137mr190379qtb.8.1698733882397;
Mon, 30 Oct 2023 23:31:22 -0700 (PDT)
X-Received: by 2002:a05:6870:214b:b0:1dc:fc5f:5f6b with SMTP id
g11-20020a056870214b00b001dcfc5f5f6bmr5995970oae.7.1698733881937; Mon, 30 Oct
2023 23:31:21 -0700 (PDT)
Path: i2pn2.org!i2pn.org!weretis.net!feeder6.news.weretis.net!border-2.nntp.ord.giganews.com!nntp.giganews.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Mon, 30 Oct 2023 23:31:21 -0700 (PDT)
In-Reply-To: <5cedd279-f229-45cf-9d69-a0123015cd17n@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=130.231.159.203; posting-account=1H9XwwoAAADT6KUHcLIWMoply9bM_d5b
NNTP-Posting-Host: 130.231.159.203
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
<83c1577a-1061-46c8-baed-693131429119n@googlegroups.com> <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
<b19815d8-0902-44f3-9861-2e595fbc4be8n@googlegroups.com> <4c87acdf-7554-436d-a6d8-2f1693cbc4ddn@googlegroups.com>
<5cedd279-f229-45cf-9d69-a0123015cd17n@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <52bf1fa1-f480-411f-b357-7f09c62a6582n@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: haporop...@gmail.com (Hannu Poropudas)
Injection-Date: Tue, 31 Oct 2023 06:31:22 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
Lines: 347
 by: Hannu Poropudas - Tue, 31 Oct 2023 06:31 UTC

maanantai 30. lokakuuta 2023 klo 19.23.57 UTC+2 patdolan kirjoitti:
> On Monday, October 30, 2023 at 3:35:05 AM UTC-7, Hannu Poropudas wrote:
> > maanantai 30. lokakuuta 2023 klo 9.59.22 UTC+2 Hannu Poropudas kirjoitti:
> > > perjantai 27. lokakuuta 2023 klo 10.46.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > torstai 26. lokakuuta 2023 klo 11.04.40 UTC+3 Hannu Poropudas kirjoitti:
> > > > > keskiviikko 25. lokakuuta 2023 klo 14.37.35 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > > > > > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > > > > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > > > Spherically symmetric metrics which satisfies
> > > > > > > > > > > > Einstein's vacuum field equations.
> > > > > > > > > > > >
> > > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > > >
> > > > > > > > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > > > > > > > >
> > > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > > >
> > > > > > > > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > > > > > > > >
> > > > > > > > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > > > > > > > >
> > > > > > > > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > > > > > > > >
> > > > > > > > > > > > There exist a book called something like
> > > > > > > > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > > > > > > > which have about 740 pages and
> > > > > > > > > > > > I don't know if this solution is among them?
> > > > > > > > > > > >
> > > > > > > > > > > > Three singularity points of the metrics are the following:
> > > > > > > > > > > >
> > > > > > > > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > > > > > > > >
> > > > > > > > > > > >
> > > > > > > > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > > > > > > > >
> > > > > > > > > > > > Reference:
> > > > > > > > > > > > Tolman R. C., 1934.
> > > > > > > > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > > > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > > > > > > > >
> > > > > > > > > > > > Best Regrads,
> > > > > > > > > > > >
> > > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > > >
> > > > > > > > > > > > Kolamäentie 9E
> > > > > > > > > > > > 90900 Kiiminki / Oulu
> > > > > > > > > > > > Finland
> > > > > > > > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > > > > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > > > > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > > > > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > > > > > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > > > > > > > >
> > > > > > > > > > > MG = 6.292090968*10^11,
> > > > > > > > > > > 2*MG=1.258418194*10^12.
> > > > > > > > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > > > > > > > >
> > > > > > > > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > > > > > > > +,- sign for integral
> > > > > > > > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > > > > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > > > > > > > >
> > > > > > > > > > > and
> > > > > > > > > > >
> > > > > > > > > > > -1.103327381*10^12<=rr<=0
> > > > > > > > > > > +,- sign for integral
> > > > > > > > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > > > > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > > > > > > > >
> > > > > > > > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > > > > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > > > > > > > Real parts = 0 in these integrals.
> > > > > > > > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > > > > > > > How to interpret these Imaginary angle plots?
> > > > > > > > > > >
> > > > > > > > > > > Best Regards,
> > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > Your solution is either:
> > > > > > > > > >
> > > > > > > > > > (a) incorrect, or:
> > > > > > > > > >
> > > > > > > > > > (b) isometric to Schwarzschild's.
> > > > > > > > > >
> > > > > > > > > > Don't waste your time.
> > > > > > > > > >
> > > > > > > > > > --
> > > > > > > > > > Jan
> > > > > > > > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > > > > > > > >
> > > > > > > > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > > > > > > > >
> > > > > > > > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > > > > > > > but you are correct in point of view that it may not be physically acceptable solution
> > > > > > > > > of these equations at our present orthodoxic physical knowledge.
> > > > > > > > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > > > > > > > >
> > > > > > > > > There exist also few other integration constants from Euler-Largrange equations,
> > > > > > > > > but I have selected randomly only one couple of them in this example calculation.
> > > > > > > > >
> > > > > > > > > Hannu
> > > > > > > > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > > > > > > > constants from Euler-Largrange equations:
> > > > > > > >
> > > > > > > > I mark now for convenience T = coordinate time and t = proper time.
> > > > > > > >
> > > > > > > > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > > > > > > > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > > > > > > > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> > > > > > > >
> > > > > > > > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > > > > > > > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > > > > > > > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > > > > > > > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > > > > > > > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> > > > > > > >
> > > > > > > > K1 = +,- 0.7072727132*I,
> > > > > > > > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> > > > > > > >
> > > > > > > > And I selected here randomly as an example two constants of integration
> > > > > > > > in this my two analytic solutions calculation:
> > > > > > > >
> > > > > > > > K1 = - 0.7072727132*I
> > > > > > > > and
> > > > > > > > K2 = 0.5943942676 - 0.5943942676*I
> > > > > > > >
> > > > > > > > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > > > > > > > (Phi(P) is pure imaginary angle and r(P) is real distance.
> > > > > > > > Phiphi(P) is pure imaginary angle and rr(P) is real distance).
> > > > > > > >
> > > > > > > > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > > > > > > > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > > > > > > > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> > > > > > > >
> > > > > > > > Those both plots resemble somehow pendulum orbit ?
> > > > > > > >
> > > > > > > > I have NO physical interpretations of these solutions
> > > > > > > > and I think that these have NO real physical applications.
> > > > > > > >
> > > > > > > > Hannu Poropudas
> > > > > > > I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
> > > > > > >
> > > > > > > It seems to me that this integral is too complicated to calculate analytically, but it could be so
> > > > > > > with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> > > > > > > in this above case that the coordinate time T could be two dimensional complex number ?
> > > > > > >
> > > > > > > This also seems to support what I said above.
> > > > > > > I have NO physical interpretations of these solutions
> > > > > > > and I think at the moment that these have NO real physical applications.
> > > > > > >
> > > > > > > And we should study two dimensional complex mathematics of two dimensional
> > > > > > > coordinate time (T) in this complicated integral better,
> > > > > > > if we try to better understand this situation,
> > > > > > > if this would be sensible at all ?
> > > > > > >
> > > > > > > Best Regards,
> > > > > > > Hannu Poropudas
> > > > > > CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
> > > > > > Sorry that I confused these two letters.
> > > > > >
> > > > > > Hannu
> > > > > I found one interesting reference, which show that there
> > > > > are really only few astrophysically significant exact solutions to Einstein's field equations.
> > > > >
> > > > > Ishak, M. 2015.
> > > > > Exact Solutions to Einstein's Equations in Astrophysics.
> > > > > Texas Symposium on Relativistic Astrophysics, Geneva 2015.
> > > > > 33 pages.
> > > > > https://personal.utdallas.edu/~mishak/ExactSolutionsInAstrophysics_Ishak_Final.pdf
> > > > >
> > > > > Please take a look.
> > > > >
> > > > > Best Regards,
> > > > > Hannu Poropudas
> > > > In order to me more mathematically complete I calculate also
> > > > approximate proper time t integral (primitive function)
> > > > and plotted both real part and imaginary part of it.
> > > > I have NO interpretations of these.
> > > >
> > > > ># Approximate proper time t integral calculated HP 27.10.2023
> > > > ># REMARK: My letter convenience t=proper time T=coordinate time
> > > > ># Real part and Imaginary part plotted
> > > > >#K3:=0;
> > > > >#K1 := -0.7072727132*I;
> > > > >#K2 := 0.5943942676-0.5943942676*I;
> > > > >#m := MG;
> > > > >#MG := 0.6292090968e12;
> > > > >#2*MG := 0.1258418194e13;
> > > > >#a2<=r<=a1, definition area
> > > > >#a2=2.720522631*10^11, a1=8.306841627*10^11
> > > >
> > > > >#Real part of primitive function t approx.
> > > > ># Series approx at r = MG up to 7 degree.
> > > +,- sign for REIF(r)
> > > > >REIF:=r->-0.9292411964e-8*r+0.8717127610e-20*r^2+0.4446277653e-31*(r-0.6292090968e12)^3+0.2329675135e-42*(r-0.6292090968e12)^4+0.3071201158e-47*(r-0.6292090968e12)^5+0.2827253683e-58*(r-0.6292090968e12)^6+0.2065510967e-69*(r-0.6292090968e12)^7;
> > > >
> > > > >#Imaginary part of primitive function t approx.
> > > > >># Series approx at r = MG up to 7 degree.
> > > +,- sign for IMIF(r)
> > > > >IMIF:=r->-0.2217185446e-7*r+0.3637453960e-19*r^2+0.1018586871e-30*(r-0.6292090968e12)^3+0.3376062792e-42*(r-0.6292090968e12)^4+0.4794788388e-47*(r-0.6292090968e12)^5+0.2475402813e-58*(r-0.6292090968e12)^6+0.1233132761e-69*(r-0.6292090968e12)^7;
> > > >
> > > > > #a2<=r<=a1, definition area
> > > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > > #MG := 0.6292090968e12;
> > > > > #2*MG := 0.1258418194e13;
> > > >
> > > +,- sign for REIF(r)
> > > > >plot(REIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > > >
> > > > > #a2<=r<=a1, definition area
> > > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > > #MG := 0.6292090968e12;
> > > > > #2*MG := 0.1258418194e13;
> > > >
> > > +,- sign for IMIF(r)
> > > > >plot(IMIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > > >
> > > >
> > > > Best Regards,
> > > > Hannu Poropudas
> > I calculated also coordinate time T series approximation up to 7 degree at r=MG,
> > (REMARK: This is preliminary calculation I have not rechecked it yet):
> >
> > If my approximate calculations are correct, then it is possible to calculate more
> > "quantities" in this strange black hole of two event horizons space-time of mine,
> > if this is sensible at all?
> >
> > ># Two branches of coordinate time T series approx.30.10.2023 H.P.
> >
> > ># This coordinate time T is also complex number with two branches
> > ># (real and Imaginary)
> >
> > >#Coordinate time T series approx. up to 7 degree
> > ># function-(series approx function), not integrated here
> > >#(+)branch only used error estimation (compare proper time case)
> >
> > ># +,- formula (Primitive function, Real part)
> >
> > >REIG:=r->-2.851064818*ln(abs(r-0.6292090968e12))-.8288703850*(1-csgn(r-0.6292090968e12))*Pi+0.3330424925e12/(r-0.6292090968e12)-0.2939012715e-11*r;
> >
> > ># error estimation max positive side about 8.3*10^(-9)
> > ># error estimation max abs negative side about -4.2*10^(-9)
> > ># Both max are at r=MG, other definition area error = about 0
> >
> > ># +,- formula (Primitive function, Imaginary part)
> >
> > >IMIG:=r->-1.425532409*(1-csgn(r-0.6292090968e12))*Pi+1.657740770*ln(abs(r-0.6292090968e12))-0.2312741379e12/(r-0.6292090968e12)+0.1298075147e-11*r;
> >
> > ># error estimation max positive side about 3.2*10^(-9)
> > ># error estimation max abs negative side about -6.4*10^(-9)
> > ># Both max are at r=MG, other definition area error = about 0
> >
> > Best Regards,
> > Hannu Poropudas
> Hannu, is this how you treat the discoverer of the Big Ben Paradox? Complete silence? You will not be portrayed in a very generous way when I write my autobiography.


Click here to read the complete article
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<8de86deb-2a60-4b09-b548-9b05cc9f5058n@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127478&group=sci.physics.relativity#127478

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:a05:620a:8591:b0:778:905f:277d with SMTP id pf17-20020a05620a859100b00778905f277dmr30768qkn.6.1698741620898;
Tue, 31 Oct 2023 01:40:20 -0700 (PDT)
X-Received: by 2002:a9d:6b1a:0:b0:6bd:b0c9:a90 with SMTP id
g26-20020a9d6b1a000000b006bdb0c90a90mr3414233otp.4.1698741620621; Tue, 31 Oct
2023 01:40:20 -0700 (PDT)
Path: i2pn2.org!i2pn.org!weretis.net!feeder6.news.weretis.net!1.us.feeder.erje.net!3.us.feeder.erje.net!feeder.erje.net!border-1.nntp.ord.giganews.com!nntp.giganews.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Tue, 31 Oct 2023 01:40:20 -0700 (PDT)
In-Reply-To: <4c87acdf-7554-436d-a6d8-2f1693cbc4ddn@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=85.194.208.161; posting-account=1H9XwwoAAADT6KUHcLIWMoply9bM_d5b
NNTP-Posting-Host: 85.194.208.161
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
<83c1577a-1061-46c8-baed-693131429119n@googlegroups.com> <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
<b19815d8-0902-44f3-9861-2e595fbc4be8n@googlegroups.com> <4c87acdf-7554-436d-a6d8-2f1693cbc4ddn@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <8de86deb-2a60-4b09-b548-9b05cc9f5058n@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: haporop...@gmail.com (Hannu Poropudas)
Injection-Date: Tue, 31 Oct 2023 08:40:20 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
Lines: 363
 by: Hannu Poropudas - Tue, 31 Oct 2023 08:40 UTC

maanantai 30. lokakuuta 2023 klo 12.35.05 UTC+2 Hannu Poropudas kirjoitti:
> maanantai 30. lokakuuta 2023 klo 9.59.22 UTC+2 Hannu Poropudas kirjoitti:
> > perjantai 27. lokakuuta 2023 klo 10.46.55 UTC+3 Hannu Poropudas kirjoitti:
> > > torstai 26. lokakuuta 2023 klo 11.04.40 UTC+3 Hannu Poropudas kirjoitti:
> > > > keskiviikko 25. lokakuuta 2023 klo 14.37.35 UTC+3 Hannu Poropudas kirjoitti:
> > > > > keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > > > > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > > > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > > Spherically symmetric metrics which satisfies
> > > > > > > > > > > Einstein's vacuum field equations.
> > > > > > > > > > >
> > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > >
> > > > > > > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > > > > > > >
> > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > >
> > > > > > > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > > > > > > >
> > > > > > > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > > > > > > >
> > > > > > > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > > > > > > >
> > > > > > > > > > > There exist a book called something like
> > > > > > > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > > > > > > which have about 740 pages and
> > > > > > > > > > > I don't know if this solution is among them?
> > > > > > > > > > >
> > > > > > > > > > > Three singularity points of the metrics are the following:
> > > > > > > > > > >
> > > > > > > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > > > > > > >
> > > > > > > > > > >
> > > > > > > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > > > > > > >
> > > > > > > > > > > Reference:
> > > > > > > > > > > Tolman R. C., 1934.
> > > > > > > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > > > > > > >
> > > > > > > > > > > Best Regrads,
> > > > > > > > > > >
> > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > >
> > > > > > > > > > > Kolamäentie 9E
> > > > > > > > > > > 90900 Kiiminki / Oulu
> > > > > > > > > > > Finland
> > > > > > > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > > > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > > > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > > > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > > > > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > > > > > > >
> > > > > > > > > > MG = 6.292090968*10^11,
> > > > > > > > > > 2*MG=1.258418194*10^12.
> > > > > > > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > > > > > > >
> > > > > > > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > > > > > > +,- sign for integral
> > > > > > > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > > > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > > > > > > >
> > > > > > > > > > and
> > > > > > > > > >
> > > > > > > > > > -1.103327381*10^12<=rr<=0
> > > > > > > > > > +,- sign for integral
> > > > > > > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > > > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1..103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > > > > > > >
> > > > > > > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > > > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > > > > > > Real parts = 0 in these integrals.
> > > > > > > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > > > > > > How to interpret these Imaginary angle plots?
> > > > > > > > > >
> > > > > > > > > > Best Regards,
> > > > > > > > > > Hannu Poropudas
> > > > > > > > > Your solution is either:
> > > > > > > > >
> > > > > > > > > (a) incorrect, or:
> > > > > > > > >
> > > > > > > > > (b) isometric to Schwarzschild's.
> > > > > > > > >
> > > > > > > > > Don't waste your time.
> > > > > > > > >
> > > > > > > > > --
> > > > > > > > > Jan
> > > > > > > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > > > > > > >
> > > > > > > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > > > > > > >
> > > > > > > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > > > > > > but you are correct in point of view that it may not be physically acceptable solution
> > > > > > > > of these equations at our present orthodoxic physical knowledge.
> > > > > > > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > > > > > > >
> > > > > > > > There exist also few other integration constants from Euler-Largrange equations,
> > > > > > > > but I have selected randomly only one couple of them in this example calculation.
> > > > > > > >
> > > > > > > > Hannu
> > > > > > > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > > > > > > constants from Euler-Largrange equations:
> > > > > > >
> > > > > > > I mark now for convenience T = coordinate time and t = proper time.
> > > > > > >
> > > > > > > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > > > > > > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > > > > > > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> > > > > > >
> > > > > > > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > > > > > > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > > > > > > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > > > > > > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > > > > > > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> > > > > > >
> > > > > > > K1 = +,- 0.7072727132*I,
> > > > > > > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> > > > > > >
> > > > > > > And I selected here randomly as an example two constants of integration
> > > > > > > in this my two analytic solutions calculation:
> > > > > > >
> > > > > > > K1 = - 0.7072727132*I
> > > > > > > and
> > > > > > > K2 = 0.5943942676 - 0.5943942676*I
> > > > > > >
> > > > > > > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > > > > > > (Phi(P) is pure imaginary angle and r(P) is real distance.
> > > > > > > Phiphi(P) is pure imaginary angle and rr(P) is real distance)..
> > > > > > >
> > > > > > > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > > > > > > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > > > > > > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> > > > > > >
> > > > > > > Those both plots resemble somehow pendulum orbit ?
> > > > > > >
> > > > > > > I have NO physical interpretations of these solutions
> > > > > > > and I think that these have NO real physical applications.
> > > > > > >
> > > > > > > Hannu Poropudas
> > > > > > I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
> > > > > >
> > > > > > It seems to me that this integral is too complicated to calculate analytically, but it could be so
> > > > > > with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> > > > > > in this above case that the coordinate time T could be two dimensional complex number ?
> > > > > >
> > > > > > This also seems to support what I said above.
> > > > > > I have NO physical interpretations of these solutions
> > > > > > and I think at the moment that these have NO real physical applications.
> > > > > >
> > > > > > And we should study two dimensional complex mathematics of two dimensional
> > > > > > coordinate time (T) in this complicated integral better,
> > > > > > if we try to better understand this situation,
> > > > > > if this would be sensible at all ?
> > > > > >
> > > > > > Best Regards,
> > > > > > Hannu Poropudas
> > > > > CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
> > > > > Sorry that I confused these two letters.
> > > > >
> > > > > Hannu
> > > > I found one interesting reference, which show that there
> > > > are really only few astrophysically significant exact solutions to Einstein's field equations.
> > > >
> > > > Ishak, M. 2015.
> > > > Exact Solutions to Einstein's Equations in Astrophysics.
> > > > Texas Symposium on Relativistic Astrophysics, Geneva 2015.
> > > > 33 pages.
> > > > https://personal.utdallas.edu/~mishak/ExactSolutionsInAstrophysics_Ishak_Final.pdf
> > > >
> > > > Please take a look.
> > > >
> > > > Best Regards,
> > > > Hannu Poropudas
> > > In order to me more mathematically complete I calculate also
> > > approximate proper time t integral (primitive function)
> > > and plotted both real part and imaginary part of it.
> > > I have NO interpretations of these.
> > >
> > > ># Approximate proper time t integral calculated HP 27.10.2023
> > > ># REMARK: My letter convenience t=proper time T=coordinate time
> > > ># Real part and Imaginary part plotted
> > > >#K3:=0;
> > > >#K1 := -0.7072727132*I;
> > > >#K2 := 0.5943942676-0.5943942676*I;
> > > >#m := MG;
> > > >#MG := 0.6292090968e12;
> > > >#2*MG := 0.1258418194e13;
> > > >#a2<=r<=a1, definition area
> > > >#a2=2.720522631*10^11, a1=8.306841627*10^11
> > >
> > > >#Real part of primitive function t approx.
> > > ># Series approx at r = MG up to 7 degree.
> > +,- sign for REIF(r)
> > > >REIF:=r->-0.9292411964e-8*r+0.8717127610e-20*r^2+0.4446277653e-31*(r-0.6292090968e12)^3+0.2329675135e-42*(r-0.6292090968e12)^4+0.3071201158e-47*(r-0.6292090968e12)^5+0.2827253683e-58*(r-0.6292090968e12)^6+0.2065510967e-69*(r-0.6292090968e12)^7;
> > >
> > > >#Imaginary part of primitive function t approx.
> > > >># Series approx at r = MG up to 7 degree.
> > +,- sign for IMIF(r)
> > > >IMIF:=r->-0.2217185446e-7*r+0.3637453960e-19*r^2+0.1018586871e-30*(r-0.6292090968e12)^3+0.3376062792e-42*(r-0.6292090968e12)^4+0.4794788388e-47*(r-0.6292090968e12)^5+0.2475402813e-58*(r-0.6292090968e12)^6+0.1233132761e-69*(r-0.6292090968e12)^7;
> > >
> > > > #a2<=r<=a1, definition area
> > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > #MG := 0.6292090968e12;
> > > > #2*MG := 0.1258418194e13;
> > >
> > +,- sign for REIF(r)
> > > >plot(REIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > >
> > > > #a2<=r<=a1, definition area
> > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > #MG := 0.6292090968e12;
> > > > #2*MG := 0.1258418194e13;
> > >
> > +,- sign for IMIF(r)
> > > >plot(IMIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > >
> > >
> > > Best Regards,
> > > Hannu Poropudas
> I calculated also coordinate time T series approximation up to 7 degree at r=MG,
> (REMARK: This is preliminary calculation I have not rechecked it yet):
>
> If my approximate calculations are correct, then it is possible to calculate more
> "quantities" in this strange black hole of two event horizons space-time of mine,
> if this is sensible at all?
>
> ># Two branches of coordinate time T series approx.30.10.2023 H.P.
>
> ># This coordinate time T is also complex number with two branches
> ># (real and Imaginary)
>
> >#Coordinate time T series approx. up to 7 degree
> ># function-(series approx function), not integrated here
> >#(+)branch only used error estimation (compare proper time case)
>
> ># +,- formula (Primitive function, Real part)
>
> >REIG:=r->-2.851064818*ln(abs(r-0.6292090968e12))-.8288703850*(1-csgn(r-0.6292090968e12))*Pi+0.3330424925e12/(r-0.6292090968e12)-0.2939012715e-11*r;
>
> ># error estimation max positive side about 8.3*10^(-9)
> ># error estimation max abs negative side about -4.2*10^(-9)
> ># Both max are at r=MG, other definition area error = about 0
>
> ># +,- formula (Primitive function, Imaginary part)
>
> >IMIG:=r->-1.425532409*(1-csgn(r-0.6292090968e12))*Pi+1.657740770*ln(abs(r-0.6292090968e12))-0.2312741379e12/(r-0.6292090968e12)+0.1298075147e-11*r;
>
> ># error estimation max positive side about 3.2*10^(-9)
> ># error estimation max abs negative side about -6.4*10^(-9)
> ># Both max are at r=MG, other definition area error = about 0
>
> Best Regards,
> Hannu Poropudas


Click here to read the complete article
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<83fab41d-1aa8-4967-965a-ddedcbff4f0bn@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127481&group=sci.physics.relativity#127481

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:a0c:c484:0:b0:66c:ef33:484c with SMTP id u4-20020a0cc484000000b0066cef33484cmr206787qvi.10.1698752514673;
Tue, 31 Oct 2023 04:41:54 -0700 (PDT)
X-Received: by 2002:a05:6870:6188:b0:1e9:a86f:ec3b with SMTP id
a8-20020a056870618800b001e9a86fec3bmr6922059oah.2.1698752514077; Tue, 31 Oct
2023 04:41:54 -0700 (PDT)
Path: i2pn2.org!i2pn.org!weretis.net!feeder8.news.weretis.net!proxad.net!feeder1-2.proxad.net!209.85.160.216.MISMATCH!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Tue, 31 Oct 2023 04:41:53 -0700 (PDT)
In-Reply-To: <8de86deb-2a60-4b09-b548-9b05cc9f5058n@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=130.231.159.203; posting-account=1H9XwwoAAADT6KUHcLIWMoply9bM_d5b
NNTP-Posting-Host: 130.231.159.203
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
<83c1577a-1061-46c8-baed-693131429119n@googlegroups.com> <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
<b19815d8-0902-44f3-9861-2e595fbc4be8n@googlegroups.com> <4c87acdf-7554-436d-a6d8-2f1693cbc4ddn@googlegroups.com>
<8de86deb-2a60-4b09-b548-9b05cc9f5058n@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <83fab41d-1aa8-4967-965a-ddedcbff4f0bn@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: haporop...@gmail.com (Hannu Poropudas)
Injection-Date: Tue, 31 Oct 2023 11:41:54 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
 by: Hannu Poropudas - Tue, 31 Oct 2023 11:41 UTC

tiistai 31. lokakuuta 2023 klo 10.40.22 UTC+2 Hannu Poropudas kirjoitti:
> maanantai 30. lokakuuta 2023 klo 12.35.05 UTC+2 Hannu Poropudas kirjoitti:
> > maanantai 30. lokakuuta 2023 klo 9.59.22 UTC+2 Hannu Poropudas kirjoitti:
> > > perjantai 27. lokakuuta 2023 klo 10.46.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > torstai 26. lokakuuta 2023 klo 11.04.40 UTC+3 Hannu Poropudas kirjoitti:
> > > > > keskiviikko 25. lokakuuta 2023 klo 14.37.35 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > > > > > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > > > > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > > > Spherically symmetric metrics which satisfies
> > > > > > > > > > > > Einstein's vacuum field equations.
> > > > > > > > > > > >
> > > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > > >
> > > > > > > > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > > > > > > > >
> > > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > > >
> > > > > > > > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > > > > > > > >
> > > > > > > > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > > > > > > > >
> > > > > > > > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > > > > > > > >
> > > > > > > > > > > > There exist a book called something like
> > > > > > > > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > > > > > > > which have about 740 pages and
> > > > > > > > > > > > I don't know if this solution is among them?
> > > > > > > > > > > >
> > > > > > > > > > > > Three singularity points of the metrics are the following:
> > > > > > > > > > > >
> > > > > > > > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > > > > > > > >
> > > > > > > > > > > >
> > > > > > > > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > > > > > > > >
> > > > > > > > > > > > Reference:
> > > > > > > > > > > > Tolman R. C., 1934.
> > > > > > > > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > > > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > > > > > > > >
> > > > > > > > > > > > Best Regrads,
> > > > > > > > > > > >
> > > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > > >
> > > > > > > > > > > > Kolamäentie 9E
> > > > > > > > > > > > 90900 Kiiminki / Oulu
> > > > > > > > > > > > Finland
> > > > > > > > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > > > > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > > > > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > > > > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > > > > > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > > > > > > > >
> > > > > > > > > > > MG = 6.292090968*10^11,
> > > > > > > > > > > 2*MG=1.258418194*10^12.
> > > > > > > > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > > > > > > > >
> > > > > > > > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > > > > > > > +,- sign for integral
> > > > > > > > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > > > > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > > > > > > > >
> > > > > > > > > > > and
> > > > > > > > > > >
> > > > > > > > > > > -1.103327381*10^12<=rr<=0
> > > > > > > > > > > +,- sign for integral
> > > > > > > > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > > > > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > > > > > > > >
> > > > > > > > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > > > > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > > > > > > > Real parts = 0 in these integrals.
> > > > > > > > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > > > > > > > How to interpret these Imaginary angle plots?
> > > > > > > > > > >
> > > > > > > > > > > Best Regards,
> > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > Your solution is either:
> > > > > > > > > >
> > > > > > > > > > (a) incorrect, or:
> > > > > > > > > >
> > > > > > > > > > (b) isometric to Schwarzschild's.
> > > > > > > > > >
> > > > > > > > > > Don't waste your time.
> > > > > > > > > >
> > > > > > > > > > --
> > > > > > > > > > Jan
> > > > > > > > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > > > > > > > >
> > > > > > > > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > > > > > > > >
> > > > > > > > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > > > > > > > but you are correct in point of view that it may not be physically acceptable solution
> > > > > > > > > of these equations at our present orthodoxic physical knowledge.
> > > > > > > > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > > > > > > > >
> > > > > > > > > There exist also few other integration constants from Euler-Largrange equations,
> > > > > > > > > but I have selected randomly only one couple of them in this example calculation.
> > > > > > > > >
> > > > > > > > > Hannu
> > > > > > > > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > > > > > > > constants from Euler-Largrange equations:
> > > > > > > >
> > > > > > > > I mark now for convenience T = coordinate time and t = proper time.
> > > > > > > >
> > > > > > > > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > > > > > > > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > > > > > > > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> > > > > > > >
> > > > > > > > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > > > > > > > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > > > > > > > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > > > > > > > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > > > > > > > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> > > > > > > >
> > > > > > > > K1 = +,- 0.7072727132*I,
> > > > > > > > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> > > > > > > >
> > > > > > > > And I selected here randomly as an example two constants of integration
> > > > > > > > in this my two analytic solutions calculation:
> > > > > > > >
> > > > > > > > K1 = - 0.7072727132*I
> > > > > > > > and
> > > > > > > > K2 = 0.5943942676 - 0.5943942676*I
> > > > > > > >
> > > > > > > > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > > > > > > > (Phi(P) is pure imaginary angle and r(P) is real distance.
> > > > > > > > Phiphi(P) is pure imaginary angle and rr(P) is real distance).
> > > > > > > >
> > > > > > > > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > > > > > > > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > > > > > > > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> > > > > > > >
> > > > > > > > Those both plots resemble somehow pendulum orbit ?
> > > > > > > >
> > > > > > > > I have NO physical interpretations of these solutions
> > > > > > > > and I think that these have NO real physical applications.
> > > > > > > >
> > > > > > > > Hannu Poropudas
> > > > > > > I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
> > > > > > >
> > > > > > > It seems to me that this integral is too complicated to calculate analytically, but it could be so
> > > > > > > with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> > > > > > > in this above case that the coordinate time T could be two dimensional complex number ?
> > > > > > >
> > > > > > > This also seems to support what I said above.
> > > > > > > I have NO physical interpretations of these solutions
> > > > > > > and I think at the moment that these have NO real physical applications.
> > > > > > >
> > > > > > > And we should study two dimensional complex mathematics of two dimensional
> > > > > > > coordinate time (T) in this complicated integral better,
> > > > > > > if we try to better understand this situation,
> > > > > > > if this would be sensible at all ?
> > > > > > >
> > > > > > > Best Regards,
> > > > > > > Hannu Poropudas
> > > > > > CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
> > > > > > Sorry that I confused these two letters.
> > > > > >
> > > > > > Hannu
> > > > > I found one interesting reference, which show that there
> > > > > are really only few astrophysically significant exact solutions to Einstein's field equations.
> > > > >
> > > > > Ishak, M. 2015.
> > > > > Exact Solutions to Einstein's Equations in Astrophysics.
> > > > > Texas Symposium on Relativistic Astrophysics, Geneva 2015.
> > > > > 33 pages.
> > > > > https://personal.utdallas.edu/~mishak/ExactSolutionsInAstrophysics_Ishak_Final.pdf
> > > > >
> > > > > Please take a look.
> > > > >
> > > > > Best Regards,
> > > > > Hannu Poropudas
> > > > In order to me more mathematically complete I calculate also
> > > > approximate proper time t integral (primitive function)
> > > > and plotted both real part and imaginary part of it.
> > > > I have NO interpretations of these.
> > > >
> > > > ># Approximate proper time t integral calculated HP 27.10.2023
> > > > ># REMARK: My letter convenience t=proper time T=coordinate time
> > > > ># Real part and Imaginary part plotted
> > > > >#K3:=0;
> > > > >#K1 := -0.7072727132*I;
> > > > >#K2 := 0.5943942676-0.5943942676*I;
> > > > >#m := MG;
> > > > >#MG := 0.6292090968e12;
> > > > >#2*MG := 0.1258418194e13;
> > > > >#a2<=r<=a1, definition area
> > > > >#a2=2.720522631*10^11, a1=8.306841627*10^11
> > > >
> > > > >#Real part of primitive function t approx.
> > > > ># Series approx at r = MG up to 7 degree.
> > > +,- sign for REIF(r)
> > > > >REIF:=r->-0.9292411964e-8*r+0.8717127610e-20*r^2+0.4446277653e-31*(r-0.6292090968e12)^3+0.2329675135e-42*(r-0.6292090968e12)^4+0.3071201158e-47*(r-0.6292090968e12)^5+0.2827253683e-58*(r-0.6292090968e12)^6+0.2065510967e-69*(r-0.6292090968e12)^7;
> > > >
> > > > >#Imaginary part of primitive function t approx.
> > > > >># Series approx at r = MG up to 7 degree.
> > > +,- sign for IMIF(r)
> > > > >IMIF:=r->-0.2217185446e-7*r+0.3637453960e-19*r^2+0.1018586871e-30*(r-0.6292090968e12)^3+0.3376062792e-42*(r-0.6292090968e12)^4+0.4794788388e-47*(r-0.6292090968e12)^5+0.2475402813e-58*(r-0.6292090968e12)^6+0.1233132761e-69*(r-0.6292090968e12)^7;
> > > >
> > > > > #a2<=r<=a1, definition area
> > > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > > #MG := 0.6292090968e12;
> > > > > #2*MG := 0.1258418194e13;
> > > >
> > > +,- sign for REIF(r)
> > > > >plot(REIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > > >
> > > > > #a2<=r<=a1, definition area
> > > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > > #MG := 0.6292090968e12;
> > > > > #2*MG := 0.1258418194e13;
> > > >
> > > +,- sign for IMIF(r)
> > > > >plot(IMIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > > >
> > > >
> > > > Best Regards,
> > > > Hannu Poropudas
> > I calculated also coordinate time T series approximation up to 7 degree at r=MG,
> > (REMARK: This is preliminary calculation I have not rechecked it yet):
> >
> > If my approximate calculations are correct, then it is possible to calculate more
> > "quantities" in this strange black hole of two event horizons space-time of mine,
> > if this is sensible at all?
> >
> > ># Two branches of coordinate time T series approx.30.10.2023 H.P.
> >
> > ># This coordinate time T is also complex number with two branches
> > ># (real and Imaginary)
> >
> > >#Coordinate time T series approx. up to 7 degree
> > ># function-(series approx function), not integrated here
> > >#(+)branch only used error estimation (compare proper time case)
> >
> > ># +,- formula (Primitive function, Real part)
> >
> > >REIG:=r->-2.851064818*ln(abs(r-0.6292090968e12))-.8288703850*(1-csgn(r-0.6292090968e12))*Pi+0.3330424925e12/(r-0.6292090968e12)-0.2939012715e-11*r;
> >
> > ># error estimation max positive side about 8.3*10^(-9)
> > ># error estimation max abs negative side about -4.2*10^(-9)
> > ># Both max are at r=MG, other definition area error = about 0
> >
> > ># +,- formula (Primitive function, Imaginary part)
> >
> > >IMIG:=r->-1.425532409*(1-csgn(r-0.6292090968e12))*Pi+1.657740770*ln(abs(r-0.6292090968e12))-0.2312741379e12/(r-0.6292090968e12)+0.1298075147e-11*r;
> >
> > ># error estimation max positive side about 3.2*10^(-9)
> > ># error estimation max abs negative side about -6.4*10^(-9)
> > ># Both max are at r=MG, other definition area error = about 0
> >
> > Best Regards,
> > Hannu Poropudas
> I'am sorry about error in 30.10.2023 posting of mine.
>
> Here is CORRECTED 30.10.2023 posting of mine
>
> ># CORRECTED. Two branches of coordinate time T series approx.31.10.2023 H.P.
> ># This coordinate time T is also complex number with two branches ># (real and Imaginary)
>
> >#Coordinate time T series approx. up to 7 degree
> ># function-(series approx function), not integrated here
> >#(+)branch only used error estimation (compare proper time case)
>
> ># +,- formula (Primitive function, Real part)
> >REIG:=r->-1.425532409*ln(abs(r-0.6292090968e12))-.4144351924*(1-csgn(r-0.6292090968e12))*Pi+0.3330424925e12/(r-0.6292090968e12)-0.2939012715e-11*r;
>
> ># error estimation max positive side about 7.5*10^(-13)
> ># error estimation max abs negative side about -1.3*10^(-12)
> ># +,- formula (Primitive function, Imaginary part)
> >IMIG:=r->-0.7127662045*(1-csgn(r-0.6292090968e12))*Pi+0.8288703849*ln(abs(r-0.6292090968e12))-0.2312741379e12/(r-0.6292090968e12)+0.1298075147e-11*r;
>
> ># error estimation max positive side about 4.8*10^(-13)
> ># error estimation max abs negative side about -2.4*10^(-13)
>
> Best Regards,
> Hannu Poropudas


Click here to read the complete article
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<acd96160-71d8-45a7-a110-6f1e88309772n@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127487&group=sci.physics.relativity#127487

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:a05:6214:1046:b0:671:60c1:1bd9 with SMTP id l6-20020a056214104600b0067160c11bd9mr139697qvr.6.1698774579853;
Tue, 31 Oct 2023 10:49:39 -0700 (PDT)
X-Received: by 2002:a05:6830:3d0e:b0:6ce:37c0:aa7d with SMTP id
eu14-20020a0568303d0e00b006ce37c0aa7dmr3662548otb.4.1698774579635; Tue, 31
Oct 2023 10:49:39 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer02.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Tue, 31 Oct 2023 10:49:39 -0700 (PDT)
In-Reply-To: <52bf1fa1-f480-411f-b357-7f09c62a6582n@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=2601:602:9b00:7c40:e567:f988:d3cb:d729;
posting-account=9sfziQoAAAD_UD5NP4mC4DjcYPHqoIUc
NNTP-Posting-Host: 2601:602:9b00:7c40:e567:f988:d3cb:d729
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
<83c1577a-1061-46c8-baed-693131429119n@googlegroups.com> <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
<b19815d8-0902-44f3-9861-2e595fbc4be8n@googlegroups.com> <4c87acdf-7554-436d-a6d8-2f1693cbc4ddn@googlegroups.com>
<5cedd279-f229-45cf-9d69-a0123015cd17n@googlegroups.com> <52bf1fa1-f480-411f-b357-7f09c62a6582n@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <acd96160-71d8-45a7-a110-6f1e88309772n@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: patdo...@comcast.net (patdolan)
Injection-Date: Tue, 31 Oct 2023 17:49:39 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 18532
 by: patdolan - Tue, 31 Oct 2023 17:49 UTC

On Monday, October 30, 2023 at 11:31:23 PM UTC-7, Hannu Poropudas wrote:
> maanantai 30. lokakuuta 2023 klo 19.23.57 UTC+2 patdolan kirjoitti:
> > On Monday, October 30, 2023 at 3:35:05 AM UTC-7, Hannu Poropudas wrote:
> > > maanantai 30. lokakuuta 2023 klo 9.59.22 UTC+2 Hannu Poropudas kirjoitti:
> > > > perjantai 27. lokakuuta 2023 klo 10.46.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > > torstai 26. lokakuuta 2023 klo 11.04.40 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > keskiviikko 25. lokakuuta 2023 klo 14.37.35 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > > > > > > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > > > > > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > > > > Spherically symmetric metrics which satisfies
> > > > > > > > > > > > > Einstein's vacuum field equations.
> > > > > > > > > > > > >
> > > > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > > > >
> > > > > > > > > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > > > > > > > > >
> > > > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > > > >
> > > > > > > > > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > > > > > > > > >
> > > > > > > > > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > > > > > > > > >
> > > > > > > > > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > > > > > > > > >
> > > > > > > > > > > > > There exist a book called something like
> > > > > > > > > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > > > > > > > > which have about 740 pages and
> > > > > > > > > > > > > I don't know if this solution is among them?
> > > > > > > > > > > > >
> > > > > > > > > > > > > Three singularity points of the metrics are the following:
> > > > > > > > > > > > >
> > > > > > > > > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > > > > > > > > >
> > > > > > > > > > > > >
> > > > > > > > > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > > > > > > > > >
> > > > > > > > > > > > > Reference:
> > > > > > > > > > > > > Tolman R. C., 1934.
> > > > > > > > > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > > > > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > > > > > > > > >
> > > > > > > > > > > > > Best Regrads,
> > > > > > > > > > > > >
> > > > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > > > >
> > > > > > > > > > > > > Kolamäentie 9E
> > > > > > > > > > > > > 90900 Kiiminki / Oulu
> > > > > > > > > > > > > Finland
> > > > > > > > > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > > > > > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > > > > > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > > > > > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > > > > > > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > > > > > > > > >
> > > > > > > > > > > > MG = 6.292090968*10^11,
> > > > > > > > > > > > 2*MG=1.258418194*10^12.
> > > > > > > > > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > > > > > > > > >
> > > > > > > > > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > > > > > > > > +,- sign for integral
> > > > > > > > > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > > > > > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > > > > > > > > >
> > > > > > > > > > > > and
> > > > > > > > > > > >
> > > > > > > > > > > > -1.103327381*10^12<=rr<=0
> > > > > > > > > > > > +,- sign for integral
> > > > > > > > > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > > > > > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > > > > > > > > >
> > > > > > > > > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > > > > > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > > > > > > > > Real parts = 0 in these integrals.
> > > > > > > > > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > > > > > > > > How to interpret these Imaginary angle plots?
> > > > > > > > > > > >
> > > > > > > > > > > > Best Regards,
> > > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > > Your solution is either:
> > > > > > > > > > >
> > > > > > > > > > > (a) incorrect, or:
> > > > > > > > > > >
> > > > > > > > > > > (b) isometric to Schwarzschild's.
> > > > > > > > > > >
> > > > > > > > > > > Don't waste your time.
> > > > > > > > > > >
> > > > > > > > > > > --
> > > > > > > > > > > Jan
> > > > > > > > > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > > > > > > > > >
> > > > > > > > > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > > > > > > > > >
> > > > > > > > > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > > > > > > > > but you are correct in point of view that it may not be physically acceptable solution
> > > > > > > > > > of these equations at our present orthodoxic physical knowledge.
> > > > > > > > > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > > > > > > > > >
> > > > > > > > > > There exist also few other integration constants from Euler-Largrange equations,
> > > > > > > > > > but I have selected randomly only one couple of them in this example calculation.
> > > > > > > > > >
> > > > > > > > > > Hannu
> > > > > > > > > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > > > > > > > > constants from Euler-Largrange equations:
> > > > > > > > >
> > > > > > > > > I mark now for convenience T = coordinate time and t = proper time.
> > > > > > > > >
> > > > > > > > > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > > > > > > > > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > > > > > > > > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> > > > > > > > >
> > > > > > > > > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > > > > > > > > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > > > > > > > > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > > > > > > > > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > > > > > > > > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> > > > > > > > >
> > > > > > > > > K1 = +,- 0.7072727132*I,
> > > > > > > > > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> > > > > > > > >
> > > > > > > > > And I selected here randomly as an example two constants of integration
> > > > > > > > > in this my two analytic solutions calculation:
> > > > > > > > >
> > > > > > > > > K1 = - 0.7072727132*I
> > > > > > > > > and
> > > > > > > > > K2 = 0.5943942676 - 0.5943942676*I
> > > > > > > > >
> > > > > > > > > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > > > > > > > > (Phi(P) is pure imaginary angle and r(P) is real distance..
> > > > > > > > > Phiphi(P) is pure imaginary angle and rr(P) is real distance).
> > > > > > > > >
> > > > > > > > > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > > > > > > > > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > > > > > > > > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> > > > > > > > >
> > > > > > > > > Those both plots resemble somehow pendulum orbit ?
> > > > > > > > >
> > > > > > > > > I have NO physical interpretations of these solutions
> > > > > > > > > and I think that these have NO real physical applications..
> > > > > > > > >
> > > > > > > > > Hannu Poropudas
> > > > > > > > I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
> > > > > > > >
> > > > > > > > It seems to me that this integral is too complicated to calculate analytically, but it could be so
> > > > > > > > with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> > > > > > > > in this above case that the coordinate time T could be two dimensional complex number ?
> > > > > > > >
> > > > > > > > This also seems to support what I said above.
> > > > > > > > I have NO physical interpretations of these solutions
> > > > > > > > and I think at the moment that these have NO real physical applications.
> > > > > > > >
> > > > > > > > And we should study two dimensional complex mathematics of two dimensional
> > > > > > > > coordinate time (T) in this complicated integral better,
> > > > > > > > if we try to better understand this situation,
> > > > > > > > if this would be sensible at all ?
> > > > > > > >
> > > > > > > > Best Regards,
> > > > > > > > Hannu Poropudas
> > > > > > > CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
> > > > > > > Sorry that I confused these two letters.
> > > > > > >
> > > > > > > Hannu
> > > > > > I found one interesting reference, which show that there
> > > > > > are really only few astrophysically significant exact solutions to Einstein's field equations.
> > > > > >
> > > > > > Ishak, M. 2015.
> > > > > > Exact Solutions to Einstein's Equations in Astrophysics.
> > > > > > Texas Symposium on Relativistic Astrophysics, Geneva 2015.
> > > > > > 33 pages.
> > > > > > https://personal.utdallas.edu/~mishak/ExactSolutionsInAstrophysics_Ishak_Final.pdf
> > > > > >
> > > > > > Please take a look.
> > > > > >
> > > > > > Best Regards,
> > > > > > Hannu Poropudas
> > > > > In order to me more mathematically complete I calculate also
> > > > > approximate proper time t integral (primitive function)
> > > > > and plotted both real part and imaginary part of it.
> > > > > I have NO interpretations of these.
> > > > >
> > > > > ># Approximate proper time t integral calculated HP 27.10.2023
> > > > > ># REMARK: My letter convenience t=proper time T=coordinate time
> > > > > ># Real part and Imaginary part plotted
> > > > > >#K3:=0;
> > > > > >#K1 := -0.7072727132*I;
> > > > > >#K2 := 0.5943942676-0.5943942676*I;
> > > > > >#m := MG;
> > > > > >#MG := 0.6292090968e12;
> > > > > >#2*MG := 0.1258418194e13;
> > > > > >#a2<=r<=a1, definition area
> > > > > >#a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > >
> > > > > >#Real part of primitive function t approx.
> > > > > ># Series approx at r = MG up to 7 degree.
> > > > +,- sign for REIF(r)
> > > > > >REIF:=r->-0.9292411964e-8*r+0.8717127610e-20*r^2+0.4446277653e-31*(r-0.6292090968e12)^3+0.2329675135e-42*(r-0.6292090968e12)^4+0.3071201158e-47*(r-0.6292090968e12)^5+0.2827253683e-58*(r-0.6292090968e12)^6+0.2065510967e-69*(r-0.6292090968e12)^7;
> > > > >
> > > > > >#Imaginary part of primitive function t approx.
> > > > > >># Series approx at r = MG up to 7 degree.
> > > > +,- sign for IMIF(r)
> > > > > >IMIF:=r->-0.2217185446e-7*r+0.3637453960e-19*r^2+0.1018586871e-30*(r-0.6292090968e12)^3+0.3376062792e-42*(r-0.6292090968e12)^4+0.4794788388e-47*(r-0.6292090968e12)^5+0.2475402813e-58*(r-0.6292090968e12)^6+0.1233132761e-69*(r-0.6292090968e12)^7;
> > > > >
> > > > > > #a2<=r<=a1, definition area
> > > > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > > > #MG := 0.6292090968e12;
> > > > > > #2*MG := 0.1258418194e13;
> > > > >
> > > > +,- sign for REIF(r)
> > > > > >plot(REIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > > > >
> > > > > > #a2<=r<=a1, definition area
> > > > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > > > #MG := 0.6292090968e12;
> > > > > > #2*MG := 0.1258418194e13;
> > > > >
> > > > +,- sign for IMIF(r)
> > > > > >plot(IMIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > > > >
> > > > >
> > > > > Best Regards,
> > > > > Hannu Poropudas
> > > I calculated also coordinate time T series approximation up to 7 degree at r=MG,
> > > (REMARK: This is preliminary calculation I have not rechecked it yet):
> > >
> > > If my approximate calculations are correct, then it is possible to calculate more
> > > "quantities" in this strange black hole of two event horizons space-time of mine,
> > > if this is sensible at all?
> > >
> > > ># Two branches of coordinate time T series approx.30.10.2023 H.P.
> > >
> > > ># This coordinate time T is also complex number with two branches
> > > ># (real and Imaginary)
> > >
> > > >#Coordinate time T series approx. up to 7 degree
> > > ># function-(series approx function), not integrated here
> > > >#(+)branch only used error estimation (compare proper time case)
> > >
> > > ># +,- formula (Primitive function, Real part)
> > >
> > > >REIG:=r->-2.851064818*ln(abs(r-0.6292090968e12))-.8288703850*(1-csgn(r-0.6292090968e12))*Pi+0.3330424925e12/(r-0.6292090968e12)-0.2939012715e-11*r;
> > >
> > > ># error estimation max positive side about 8.3*10^(-9)
> > > ># error estimation max abs negative side about -4.2*10^(-9)
> > > ># Both max are at r=MG, other definition area error = about 0
> > >
> > > ># +,- formula (Primitive function, Imaginary part)
> > >
> > > >IMIG:=r->-1.425532409*(1-csgn(r-0.6292090968e12))*Pi+1.657740770*ln(abs(r-0.6292090968e12))-0.2312741379e12/(r-0.6292090968e12)+0.1298075147e-11*r;
> > >
> > > ># error estimation max positive side about 3.2*10^(-9)
> > > ># error estimation max abs negative side about -6.4*10^(-9)
> > > ># Both max are at r=MG, other definition area error = about 0
> > >
> > > Best Regards,
> > > Hannu Poropudas
> > Hannu, is this how you treat the discoverer of the Big Ben Paradox? Complete silence? You will not be portrayed in a very generous way when I write my autobiography.
> This is question is NOT subject of my posting chain.
>
> I noticed that in the stack exchage of physics was written about "Big Ben Paradox" question:
>
> SR is not a theory of gravity.
>
> Hannu
I accept this answer, Hannu. You have been fully restored to my good graces.


Click here to read the complete article
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<3ecbd0e2-e3cf-40e2-97da-f1459efffa8fn@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127545&group=sci.physics.relativity#127545

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:a05:620a:4606:b0:773:a4a3:3d5c with SMTP id br6-20020a05620a460600b00773a4a33d5cmr319806qkb.14.1698915338695;
Thu, 02 Nov 2023 01:55:38 -0700 (PDT)
X-Received: by 2002:a9d:4043:0:b0:6bf:12:518b with SMTP id o3-20020a9d4043000000b006bf0012518bmr4873513oti.3.1698915338331;
Thu, 02 Nov 2023 01:55:38 -0700 (PDT)
Path: i2pn2.org!i2pn.org!weretis.net!feeder6.news.weretis.net!border-2.nntp.ord.giganews.com!nntp.giganews.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Thu, 2 Nov 2023 01:55:37 -0700 (PDT)
In-Reply-To: <83fab41d-1aa8-4967-965a-ddedcbff4f0bn@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=97.126.102.120; posting-account=WH2DoQoAAADZe3cdQWvJ9HKImeLRniYW
NNTP-Posting-Host: 97.126.102.120
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
<83c1577a-1061-46c8-baed-693131429119n@googlegroups.com> <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
<b19815d8-0902-44f3-9861-2e595fbc4be8n@googlegroups.com> <4c87acdf-7554-436d-a6d8-2f1693cbc4ddn@googlegroups.com>
<8de86deb-2a60-4b09-b548-9b05cc9f5058n@googlegroups.com> <83fab41d-1aa8-4967-965a-ddedcbff4f0bn@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <3ecbd0e2-e3cf-40e2-97da-f1459efffa8fn@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: ross.a.f...@gmail.com (Ross Finlayson)
Injection-Date: Thu, 02 Nov 2023 08:55:38 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
Lines: 395
 by: Ross Finlayson - Thu, 2 Nov 2023 08:55 UTC

On Tuesday, October 31, 2023 at 4:41:56 AM UTC-7, Hannu Poropudas wrote:
> tiistai 31. lokakuuta 2023 klo 10.40.22 UTC+2 Hannu Poropudas kirjoitti:
> > maanantai 30. lokakuuta 2023 klo 12.35.05 UTC+2 Hannu Poropudas kirjoitti:
> > > maanantai 30. lokakuuta 2023 klo 9.59.22 UTC+2 Hannu Poropudas kirjoitti:
> > > > perjantai 27. lokakuuta 2023 klo 10.46.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > > torstai 26. lokakuuta 2023 klo 11.04.40 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > keskiviikko 25. lokakuuta 2023 klo 14.37.35 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > > > > > > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > > > > > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > > > > Spherically symmetric metrics which satisfies
> > > > > > > > > > > > > Einstein's vacuum field equations.
> > > > > > > > > > > > >
> > > > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > > > >
> > > > > > > > > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > > > > > > > > >
> > > > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > > > >
> > > > > > > > > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > > > > > > > > >
> > > > > > > > > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > > > > > > > > >
> > > > > > > > > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > > > > > > > > >
> > > > > > > > > > > > > There exist a book called something like
> > > > > > > > > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > > > > > > > > which have about 740 pages and
> > > > > > > > > > > > > I don't know if this solution is among them?
> > > > > > > > > > > > >
> > > > > > > > > > > > > Three singularity points of the metrics are the following:
> > > > > > > > > > > > >
> > > > > > > > > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > > > > > > > > >
> > > > > > > > > > > > >
> > > > > > > > > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > > > > > > > > >
> > > > > > > > > > > > > Reference:
> > > > > > > > > > > > > Tolman R. C., 1934.
> > > > > > > > > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > > > > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > > > > > > > > >
> > > > > > > > > > > > > Best Regrads,
> > > > > > > > > > > > >
> > > > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > > > >
> > > > > > > > > > > > > Kolamäentie 9E
> > > > > > > > > > > > > 90900 Kiiminki / Oulu
> > > > > > > > > > > > > Finland
> > > > > > > > > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > > > > > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > > > > > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > > > > > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > > > > > > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > > > > > > > > >
> > > > > > > > > > > > MG = 6.292090968*10^11,
> > > > > > > > > > > > 2*MG=1.258418194*10^12.
> > > > > > > > > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > > > > > > > > >
> > > > > > > > > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > > > > > > > > +,- sign for integral
> > > > > > > > > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > > > > > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > > > > > > > > >
> > > > > > > > > > > > and
> > > > > > > > > > > >
> > > > > > > > > > > > -1.103327381*10^12<=rr<=0
> > > > > > > > > > > > +,- sign for integral
> > > > > > > > > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > > > > > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > > > > > > > > >
> > > > > > > > > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > > > > > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > > > > > > > > Real parts = 0 in these integrals.
> > > > > > > > > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > > > > > > > > How to interpret these Imaginary angle plots?
> > > > > > > > > > > >
> > > > > > > > > > > > Best Regards,
> > > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > > Your solution is either:
> > > > > > > > > > >
> > > > > > > > > > > (a) incorrect, or:
> > > > > > > > > > >
> > > > > > > > > > > (b) isometric to Schwarzschild's.
> > > > > > > > > > >
> > > > > > > > > > > Don't waste your time.
> > > > > > > > > > >
> > > > > > > > > > > --
> > > > > > > > > > > Jan
> > > > > > > > > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > > > > > > > > >
> > > > > > > > > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > > > > > > > > >
> > > > > > > > > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > > > > > > > > but you are correct in point of view that it may not be physically acceptable solution
> > > > > > > > > > of these equations at our present orthodoxic physical knowledge.
> > > > > > > > > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > > > > > > > > >
> > > > > > > > > > There exist also few other integration constants from Euler-Largrange equations,
> > > > > > > > > > but I have selected randomly only one couple of them in this example calculation.
> > > > > > > > > >
> > > > > > > > > > Hannu
> > > > > > > > > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > > > > > > > > constants from Euler-Largrange equations:
> > > > > > > > >
> > > > > > > > > I mark now for convenience T = coordinate time and t = proper time.
> > > > > > > > >
> > > > > > > > > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > > > > > > > > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > > > > > > > > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> > > > > > > > >
> > > > > > > > > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > > > > > > > > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > > > > > > > > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > > > > > > > > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > > > > > > > > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> > > > > > > > >
> > > > > > > > > K1 = +,- 0.7072727132*I,
> > > > > > > > > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> > > > > > > > >
> > > > > > > > > And I selected here randomly as an example two constants of integration
> > > > > > > > > in this my two analytic solutions calculation:
> > > > > > > > >
> > > > > > > > > K1 = - 0.7072727132*I
> > > > > > > > > and
> > > > > > > > > K2 = 0.5943942676 - 0.5943942676*I
> > > > > > > > >
> > > > > > > > > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > > > > > > > > (Phi(P) is pure imaginary angle and r(P) is real distance..
> > > > > > > > > Phiphi(P) is pure imaginary angle and rr(P) is real distance).
> > > > > > > > >
> > > > > > > > > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > > > > > > > > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > > > > > > > > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> > > > > > > > >
> > > > > > > > > Those both plots resemble somehow pendulum orbit ?
> > > > > > > > >
> > > > > > > > > I have NO physical interpretations of these solutions
> > > > > > > > > and I think that these have NO real physical applications..
> > > > > > > > >
> > > > > > > > > Hannu Poropudas
> > > > > > > > I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
> > > > > > > >
> > > > > > > > It seems to me that this integral is too complicated to calculate analytically, but it could be so
> > > > > > > > with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> > > > > > > > in this above case that the coordinate time T could be two dimensional complex number ?
> > > > > > > >
> > > > > > > > This also seems to support what I said above.
> > > > > > > > I have NO physical interpretations of these solutions
> > > > > > > > and I think at the moment that these have NO real physical applications.
> > > > > > > >
> > > > > > > > And we should study two dimensional complex mathematics of two dimensional
> > > > > > > > coordinate time (T) in this complicated integral better,
> > > > > > > > if we try to better understand this situation,
> > > > > > > > if this would be sensible at all ?
> > > > > > > >
> > > > > > > > Best Regards,
> > > > > > > > Hannu Poropudas
> > > > > > > CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
> > > > > > > Sorry that I confused these two letters.
> > > > > > >
> > > > > > > Hannu
> > > > > > I found one interesting reference, which show that there
> > > > > > are really only few astrophysically significant exact solutions to Einstein's field equations.
> > > > > >
> > > > > > Ishak, M. 2015.
> > > > > > Exact Solutions to Einstein's Equations in Astrophysics.
> > > > > > Texas Symposium on Relativistic Astrophysics, Geneva 2015.
> > > > > > 33 pages.
> > > > > > https://personal.utdallas.edu/~mishak/ExactSolutionsInAstrophysics_Ishak_Final.pdf
> > > > > >
> > > > > > Please take a look.
> > > > > >
> > > > > > Best Regards,
> > > > > > Hannu Poropudas
> > > > > In order to me more mathematically complete I calculate also
> > > > > approximate proper time t integral (primitive function)
> > > > > and plotted both real part and imaginary part of it.
> > > > > I have NO interpretations of these.
> > > > >
> > > > > ># Approximate proper time t integral calculated HP 27.10.2023
> > > > > ># REMARK: My letter convenience t=proper time T=coordinate time
> > > > > ># Real part and Imaginary part plotted
> > > > > >#K3:=0;
> > > > > >#K1 := -0.7072727132*I;
> > > > > >#K2 := 0.5943942676-0.5943942676*I;
> > > > > >#m := MG;
> > > > > >#MG := 0.6292090968e12;
> > > > > >#2*MG := 0.1258418194e13;
> > > > > >#a2<=r<=a1, definition area
> > > > > >#a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > >
> > > > > >#Real part of primitive function t approx.
> > > > > ># Series approx at r = MG up to 7 degree.
> > > > +,- sign for REIF(r)
> > > > > >REIF:=r->-0.9292411964e-8*r+0.8717127610e-20*r^2+0.4446277653e-31*(r-0.6292090968e12)^3+0.2329675135e-42*(r-0.6292090968e12)^4+0.3071201158e-47*(r-0.6292090968e12)^5+0.2827253683e-58*(r-0.6292090968e12)^6+0.2065510967e-69*(r-0.6292090968e12)^7;
> > > > >
> > > > > >#Imaginary part of primitive function t approx.
> > > > > >># Series approx at r = MG up to 7 degree.
> > > > +,- sign for IMIF(r)
> > > > > >IMIF:=r->-0.2217185446e-7*r+0.3637453960e-19*r^2+0.1018586871e-30*(r-0.6292090968e12)^3+0.3376062792e-42*(r-0.6292090968e12)^4+0.4794788388e-47*(r-0.6292090968e12)^5+0.2475402813e-58*(r-0.6292090968e12)^6+0.1233132761e-69*(r-0.6292090968e12)^7;
> > > > >
> > > > > > #a2<=r<=a1, definition area
> > > > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > > > #MG := 0.6292090968e12;
> > > > > > #2*MG := 0.1258418194e13;
> > > > >
> > > > +,- sign for REIF(r)
> > > > > >plot(REIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > > > >
> > > > > > #a2<=r<=a1, definition area
> > > > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > > > #MG := 0.6292090968e12;
> > > > > > #2*MG := 0.1258418194e13;
> > > > >
> > > > +,- sign for IMIF(r)
> > > > > >plot(IMIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > > > >
> > > > >
> > > > > Best Regards,
> > > > > Hannu Poropudas
> > > I calculated also coordinate time T series approximation up to 7 degree at r=MG,
> > > (REMARK: This is preliminary calculation I have not rechecked it yet):
> > >
> > > If my approximate calculations are correct, then it is possible to calculate more
> > > "quantities" in this strange black hole of two event horizons space-time of mine,
> > > if this is sensible at all?
> > >
> > > ># Two branches of coordinate time T series approx.30.10.2023 H.P.
> > >
> > > ># This coordinate time T is also complex number with two branches
> > > ># (real and Imaginary)
> > >
> > > >#Coordinate time T series approx. up to 7 degree
> > > ># function-(series approx function), not integrated here
> > > >#(+)branch only used error estimation (compare proper time case)
> > >
> > > ># +,- formula (Primitive function, Real part)
> > >
> > > >REIG:=r->-2.851064818*ln(abs(r-0.6292090968e12))-.8288703850*(1-csgn(r-0.6292090968e12))*Pi+0.3330424925e12/(r-0.6292090968e12)-0.2939012715e-11*r;
> > >
> > > ># error estimation max positive side about 8.3*10^(-9)
> > > ># error estimation max abs negative side about -4.2*10^(-9)
> > > ># Both max are at r=MG, other definition area error = about 0
> > >
> > > ># +,- formula (Primitive function, Imaginary part)
> > >
> > > >IMIG:=r->-1.425532409*(1-csgn(r-0.6292090968e12))*Pi+1.657740770*ln(abs(r-0.6292090968e12))-0.2312741379e12/(r-0.6292090968e12)+0.1298075147e-11*r;
> > >
> > > ># error estimation max positive side about 3.2*10^(-9)
> > > ># error estimation max abs negative side about -6.4*10^(-9)
> > > ># Both max are at r=MG, other definition area error = about 0
> > >
> > > Best Regards,
> > > Hannu Poropudas
> > I'am sorry about error in 30.10.2023 posting of mine.
> >
> > Here is CORRECTED 30.10.2023 posting of mine
> >
> > ># CORRECTED. Two branches of coordinate time T series approx.31.10.2023 H.P.
> > ># This coordinate time T is also complex number with two branches ># (real and Imaginary)
> >
> > >#Coordinate time T series approx. up to 7 degree
> > ># function-(series approx function), not integrated here
> > >#(+)branch only used error estimation (compare proper time case)
> >
> > ># +,- formula (Primitive function, Real part)
> > >REIG:=r->-1.425532409*ln(abs(r-0.6292090968e12))-.4144351924*(1-csgn(r-0.6292090968e12))*Pi+0.3330424925e12/(r-0.6292090968e12)-0.2939012715e-11*r;
> >
> > ># error estimation max positive side about 7.5*10^(-13)
> > ># error estimation max abs negative side about -1.3*10^(-12)
> > ># +,- formula (Primitive function, Imaginary part)
> > >IMIG:=r->-0.7127662045*(1-csgn(r-0.6292090968e12))*Pi+0.8288703849*ln(abs(r-0.6292090968e12))-0.2312741379e12/(r-0.6292090968e12)+0.1298075147e-11*r;
> >
> > ># error estimation max positive side about 4.8*10^(-13)
> > ># error estimation max abs negative side about -2.4*10^(-13)
> >
> > Best Regards,
> > Hannu Poropudas
> ONE NOTE about one "little strange" function used in my maple calculations
>
> csgn(r-0.6292090968e12) = (r-0.6292090968e12)/abs(r-0.6292090968e12)
>
> Hannu


Click here to read the complete article
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<7b0be36d-90b8-40eb-9f6b-483220ea7a7en@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127547&group=sci.physics.relativity#127547

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:ac8:7111:0:b0:412:233d:39dc with SMTP id z17-20020ac87111000000b00412233d39dcmr286815qto.0.1698918116426;
Thu, 02 Nov 2023 02:41:56 -0700 (PDT)
X-Received: by 2002:a05:6870:e38d:b0:1f0:15e3:11a5 with SMTP id
x13-20020a056870e38d00b001f015e311a5mr2977032oad.10.1698918116084; Thu, 02
Nov 2023 02:41:56 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer03.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Thu, 2 Nov 2023 02:41:55 -0700 (PDT)
In-Reply-To: <3ecbd0e2-e3cf-40e2-97da-f1459efffa8fn@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=130.231.159.203; posting-account=1H9XwwoAAADT6KUHcLIWMoply9bM_d5b
NNTP-Posting-Host: 130.231.159.203
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
<83c1577a-1061-46c8-baed-693131429119n@googlegroups.com> <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
<b19815d8-0902-44f3-9861-2e595fbc4be8n@googlegroups.com> <4c87acdf-7554-436d-a6d8-2f1693cbc4ddn@googlegroups.com>
<8de86deb-2a60-4b09-b548-9b05cc9f5058n@googlegroups.com> <83fab41d-1aa8-4967-965a-ddedcbff4f0bn@googlegroups.com>
<3ecbd0e2-e3cf-40e2-97da-f1459efffa8fn@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <7b0be36d-90b8-40eb-9f6b-483220ea7a7en@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: haporop...@gmail.com (Hannu Poropudas)
Injection-Date: Thu, 02 Nov 2023 09:41:56 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 22403
 by: Hannu Poropudas - Thu, 2 Nov 2023 09:41 UTC

torstai 2. marraskuuta 2023 klo 10.55.39 UTC+2 Ross Finlayson kirjoitti:
> On Tuesday, October 31, 2023 at 4:41:56 AM UTC-7, Hannu Poropudas wrote:
> > tiistai 31. lokakuuta 2023 klo 10.40.22 UTC+2 Hannu Poropudas kirjoitti:
> > > maanantai 30. lokakuuta 2023 klo 12.35.05 UTC+2 Hannu Poropudas kirjoitti:
> > > > maanantai 30. lokakuuta 2023 klo 9.59.22 UTC+2 Hannu Poropudas kirjoitti:
> > > > > perjantai 27. lokakuuta 2023 klo 10.46.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > torstai 26. lokakuuta 2023 klo 11.04.40 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > keskiviikko 25. lokakuuta 2023 klo 14.37.35 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > > > > > > > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > > > > > > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > > > > > Spherically symmetric metrics which satisfies
> > > > > > > > > > > > > > Einstein's vacuum field equations.
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > There exist a book called something like
> > > > > > > > > > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > > > > > > > > > which have about 740 pages and
> > > > > > > > > > > > > > I don't know if this solution is among them?
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > Three singularity points of the metrics are the following:
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > > > > > > > > > >
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > Reference:
> > > > > > > > > > > > > > Tolman R. C., 1934.
> > > > > > > > > > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > > > > > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > Best Regrads,
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > Kolamäentie 9E
> > > > > > > > > > > > > > 90900 Kiiminki / Oulu
> > > > > > > > > > > > > > Finland
> > > > > > > > > > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > > > > > > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > > > > > > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > > > > > > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > > > > > > > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > > > > > > > > > >
> > > > > > > > > > > > > MG = 6.292090968*10^11,
> > > > > > > > > > > > > 2*MG=1.258418194*10^12.
> > > > > > > > > > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > > > > > > > > > >
> > > > > > > > > > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > > > > > > > > > +,- sign for integral
> > > > > > > > > > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > > > > > > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > > > > > > > > > >
> > > > > > > > > > > > > and
> > > > > > > > > > > > >
> > > > > > > > > > > > > -1.103327381*10^12<=rr<=0
> > > > > > > > > > > > > +,- sign for integral
> > > > > > > > > > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > > > > > > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > > > > > > > > > >
> > > > > > > > > > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > > > > > > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > > > > > > > > > Real parts = 0 in these integrals.
> > > > > > > > > > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > > > > > > > > > How to interpret these Imaginary angle plots?
> > > > > > > > > > > > >
> > > > > > > > > > > > > Best Regards,
> > > > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > > > Your solution is either:
> > > > > > > > > > > >
> > > > > > > > > > > > (a) incorrect, or:
> > > > > > > > > > > >
> > > > > > > > > > > > (b) isometric to Schwarzschild's.
> > > > > > > > > > > >
> > > > > > > > > > > > Don't waste your time.
> > > > > > > > > > > >
> > > > > > > > > > > > --
> > > > > > > > > > > > Jan
> > > > > > > > > > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > > > > > > > > > >
> > > > > > > > > > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > > > > > > > > > >
> > > > > > > > > > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > > > > > > > > > but you are correct in point of view that it may not be physically acceptable solution
> > > > > > > > > > > of these equations at our present orthodoxic physical knowledge.
> > > > > > > > > > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > > > > > > > > > >
> > > > > > > > > > > There exist also few other integration constants from Euler-Largrange equations,
> > > > > > > > > > > but I have selected randomly only one couple of them in this example calculation.
> > > > > > > > > > >
> > > > > > > > > > > Hannu
> > > > > > > > > > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > > > > > > > > > constants from Euler-Largrange equations:
> > > > > > > > > >
> > > > > > > > > > I mark now for convenience T = coordinate time and t = proper time.
> > > > > > > > > >
> > > > > > > > > > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > > > > > > > > > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > > > > > > > > > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> > > > > > > > > >
> > > > > > > > > > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > > > > > > > > > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > > > > > > > > > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > > > > > > > > > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > > > > > > > > > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> > > > > > > > > >
> > > > > > > > > > K1 = +,- 0.7072727132*I,
> > > > > > > > > > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> > > > > > > > > >
> > > > > > > > > > And I selected here randomly as an example two constants of integration
> > > > > > > > > > in this my two analytic solutions calculation:
> > > > > > > > > >
> > > > > > > > > > K1 = - 0.7072727132*I
> > > > > > > > > > and
> > > > > > > > > > K2 = 0.5943942676 - 0.5943942676*I
> > > > > > > > > >
> > > > > > > > > > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > > > > > > > > > (Phi(P) is pure imaginary angle and r(P) is real distance.
> > > > > > > > > > Phiphi(P) is pure imaginary angle and rr(P) is real distance).
> > > > > > > > > >
> > > > > > > > > > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > > > > > > > > > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > > > > > > > > > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> > > > > > > > > >
> > > > > > > > > > Those both plots resemble somehow pendulum orbit ?
> > > > > > > > > >
> > > > > > > > > > I have NO physical interpretations of these solutions
> > > > > > > > > > and I think that these have NO real physical applications.
> > > > > > > > > >
> > > > > > > > > > Hannu Poropudas
> > > > > > > > > I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
> > > > > > > > >
> > > > > > > > > It seems to me that this integral is too complicated to calculate analytically, but it could be so
> > > > > > > > > with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> > > > > > > > > in this above case that the coordinate time T could be two dimensional complex number ?
> > > > > > > > >
> > > > > > > > > This also seems to support what I said above.
> > > > > > > > > I have NO physical interpretations of these solutions
> > > > > > > > > and I think at the moment that these have NO real physical applications.
> > > > > > > > >
> > > > > > > > > And we should study two dimensional complex mathematics of two dimensional
> > > > > > > > > coordinate time (T) in this complicated integral better,
> > > > > > > > > if we try to better understand this situation,
> > > > > > > > > if this would be sensible at all ?
> > > > > > > > >
> > > > > > > > > Best Regards,
> > > > > > > > > Hannu Poropudas
> > > > > > > > CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
> > > > > > > > Sorry that I confused these two letters.
> > > > > > > >
> > > > > > > > Hannu
> > > > > > > I found one interesting reference, which show that there
> > > > > > > are really only few astrophysically significant exact solutions to Einstein's field equations.
> > > > > > >
> > > > > > > Ishak, M. 2015.
> > > > > > > Exact Solutions to Einstein's Equations in Astrophysics.
> > > > > > > Texas Symposium on Relativistic Astrophysics, Geneva 2015.
> > > > > > > 33 pages.
> > > > > > > https://personal.utdallas.edu/~mishak/ExactSolutionsInAstrophysics_Ishak_Final.pdf
> > > > > > >
> > > > > > > Please take a look.
> > > > > > >
> > > > > > > Best Regards,
> > > > > > > Hannu Poropudas
> > > > > > In order to me more mathematically complete I calculate also
> > > > > > approximate proper time t integral (primitive function)
> > > > > > and plotted both real part and imaginary part of it.
> > > > > > I have NO interpretations of these.
> > > > > >
> > > > > > ># Approximate proper time t integral calculated HP 27.10.2023
> > > > > > ># REMARK: My letter convenience t=proper time T=coordinate time
> > > > > > ># Real part and Imaginary part plotted
> > > > > > >#K3:=0;
> > > > > > >#K1 := -0.7072727132*I;
> > > > > > >#K2 := 0.5943942676-0.5943942676*I;
> > > > > > >#m := MG;
> > > > > > >#MG := 0.6292090968e12;
> > > > > > >#2*MG := 0.1258418194e13;
> > > > > > >#a2<=r<=a1, definition area
> > > > > > >#a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > > >
> > > > > > >#Real part of primitive function t approx.
> > > > > > ># Series approx at r = MG up to 7 degree.
> > > > > +,- sign for REIF(r)
> > > > > > >REIF:=r->-0.9292411964e-8*r+0.8717127610e-20*r^2+0.4446277653e-31*(r-0.6292090968e12)^3+0.2329675135e-42*(r-0.6292090968e12)^4+0.3071201158e-47*(r-0.6292090968e12)^5+0.2827253683e-58*(r-0.6292090968e12)^6+0.2065510967e-69*(r-0.6292090968e12)^7;
> > > > > >
> > > > > > >#Imaginary part of primitive function t approx.
> > > > > > >># Series approx at r = MG up to 7 degree.
> > > > > +,- sign for IMIF(r)
> > > > > > >IMIF:=r->-0.2217185446e-7*r+0.3637453960e-19*r^2+0.1018586871e-30*(r-0.6292090968e12)^3+0.3376062792e-42*(r-0.6292090968e12)^4+0.4794788388e-47*(r-0.6292090968e12)^5+0.2475402813e-58*(r-0.6292090968e12)^6+0.1233132761e-69*(r-0.6292090968e12)^7;
> > > > > >
> > > > > > > #a2<=r<=a1, definition area
> > > > > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > > > > #MG := 0.6292090968e12;
> > > > > > > #2*MG := 0.1258418194e13;
> > > > > >
> > > > > +,- sign for REIF(r)
> > > > > > >plot(REIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > > > > >
> > > > > > > #a2<=r<=a1, definition area
> > > > > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > > > > #MG := 0.6292090968e12;
> > > > > > > #2*MG := 0.1258418194e13;
> > > > > >
> > > > > +,- sign for IMIF(r)
> > > > > > >plot(IMIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > > > > >
> > > > > >
> > > > > > Best Regards,
> > > > > > Hannu Poropudas
> > > > I calculated also coordinate time T series approximation up to 7 degree at r=MG,
> > > > (REMARK: This is preliminary calculation I have not rechecked it yet):
> > > >
> > > > If my approximate calculations are correct, then it is possible to calculate more
> > > > "quantities" in this strange black hole of two event horizons space-time of mine,
> > > > if this is sensible at all?
> > > >
> > > > ># Two branches of coordinate time T series approx.30.10.2023 H.P.
> > > >
> > > > ># This coordinate time T is also complex number with two branches
> > > > ># (real and Imaginary)
> > > >
> > > > >#Coordinate time T series approx. up to 7 degree
> > > > ># function-(series approx function), not integrated here
> > > > >#(+)branch only used error estimation (compare proper time case)
> > > >
> > > > ># +,- formula (Primitive function, Real part)
> > > >
> > > > >REIG:=r->-2.851064818*ln(abs(r-0.6292090968e12))-.8288703850*(1-csgn(r-0.6292090968e12))*Pi+0.3330424925e12/(r-0.6292090968e12)-0.2939012715e-11*r;
> > > >
> > > > ># error estimation max positive side about 8.3*10^(-9)
> > > > ># error estimation max abs negative side about -4.2*10^(-9)
> > > > ># Both max are at r=MG, other definition area error = about 0
> > > >
> > > > ># +,- formula (Primitive function, Imaginary part)
> > > >
> > > > >IMIG:=r->-1.425532409*(1-csgn(r-0.6292090968e12))*Pi+1.657740770*ln(abs(r-0.6292090968e12))-0.2312741379e12/(r-0.6292090968e12)+0.1298075147e-11*r;
> > > >
> > > > ># error estimation max positive side about 3.2*10^(-9)
> > > > ># error estimation max abs negative side about -6.4*10^(-9)
> > > > ># Both max are at r=MG, other definition area error = about 0
> > > >
> > > > Best Regards,
> > > > Hannu Poropudas
> > > I'am sorry about error in 30.10.2023 posting of mine.
> > >
> > > Here is CORRECTED 30.10.2023 posting of mine
> > >
> > > ># CORRECTED. Two branches of coordinate time T series approx.31.10.2023 H.P.
> > > ># This coordinate time T is also complex number with two branches ># (real and Imaginary)
> > >
> > > >#Coordinate time T series approx. up to 7 degree
> > > ># function-(series approx function), not integrated here
> > > >#(+)branch only used error estimation (compare proper time case)
> > >
> > > ># +,- formula (Primitive function, Real part)
> > > >REIG:=r->-1.425532409*ln(abs(r-0.6292090968e12))-.4144351924*(1-csgn(r-0.6292090968e12))*Pi+0.3330424925e12/(r-0.6292090968e12)-0.2939012715e-11*r;
> > >
> > > ># error estimation max positive side about 7.5*10^(-13)
> > > ># error estimation max abs negative side about -1.3*10^(-12)
> > > ># +,- formula (Primitive function, Imaginary part)
> > > >IMIG:=r->-0.7127662045*(1-csgn(r-0.6292090968e12))*Pi+0.8288703849*ln(abs(r-0.6292090968e12))-0.2312741379e12/(r-0.6292090968e12)+0.1298075147e-11*r;
> > >
> > > ># error estimation max positive side about 4.8*10^(-13)
> > > ># error estimation max abs negative side about -2.4*10^(-13)
> > >
> > > Best Regards,
> > > Hannu Poropudas
> > ONE NOTE about one "little strange" function used in my maple calculations
> >
> > csgn(r-0.6292090968e12) = (r-0.6292090968e12)/abs(r-0.6292090968e12)
> >
> > Hannu
> You mentioned the sign term reflecting that earlier you wrote from your derivation,
> that part of it was as under-defined or de facto, a compensating term.
>
> It seems what you are integrating is power terms resolving, why the halfs either
> way have a "pseudo" product, what is a law that results why in your terms, they add
> up, if you haven't explained "why" it's legal those terms wouldn't resolve,
> radiating usually.
>
> It seems those would be waves falling so would result "why", is because, they
> are under the area terms, the absorption or radiation, how then those have to
> add up, to make the estimate, which as you note appears accurate.


Click here to read the complete article
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<e3a03506-b3a9-448e-87df-f80227d1a83dn@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127566&group=sci.physics.relativity#127566

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:a0c:f703:0:b0:670:1626:decc with SMTP id w3-20020a0cf703000000b006701626deccmr292209qvn.0.1699005708629;
Fri, 03 Nov 2023 03:01:48 -0700 (PDT)
X-Received: by 2002:a05:6808:155:b0:3ab:81e4:4d78 with SMTP id
h21-20020a056808015500b003ab81e44d78mr6696144oie.8.1699005708210; Fri, 03 Nov
2023 03:01:48 -0700 (PDT)
Path: i2pn2.org!i2pn.org!weretis.net!feeder6.news.weretis.net!1.us.feeder.erje.net!feeder.erje.net!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer01.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Fri, 3 Nov 2023 03:01:47 -0700 (PDT)
In-Reply-To: <7b0be36d-90b8-40eb-9f6b-483220ea7a7en@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=85.194.208.161; posting-account=1H9XwwoAAADT6KUHcLIWMoply9bM_d5b
NNTP-Posting-Host: 85.194.208.161
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
<83c1577a-1061-46c8-baed-693131429119n@googlegroups.com> <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
<b19815d8-0902-44f3-9861-2e595fbc4be8n@googlegroups.com> <4c87acdf-7554-436d-a6d8-2f1693cbc4ddn@googlegroups.com>
<8de86deb-2a60-4b09-b548-9b05cc9f5058n@googlegroups.com> <83fab41d-1aa8-4967-965a-ddedcbff4f0bn@googlegroups.com>
<3ecbd0e2-e3cf-40e2-97da-f1459efffa8fn@googlegroups.com> <7b0be36d-90b8-40eb-9f6b-483220ea7a7en@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <e3a03506-b3a9-448e-87df-f80227d1a83dn@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: haporop...@gmail.com (Hannu Poropudas)
Injection-Date: Fri, 03 Nov 2023 10:01:48 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 28998
 by: Hannu Poropudas - Fri, 3 Nov 2023 10:01 UTC

torstai 2. marraskuuta 2023 klo 11.41.57 UTC+2 Hannu Poropudas kirjoitti:
> torstai 2. marraskuuta 2023 klo 10.55.39 UTC+2 Ross Finlayson kirjoitti:
> > On Tuesday, October 31, 2023 at 4:41:56 AM UTC-7, Hannu Poropudas wrote:
> > > tiistai 31. lokakuuta 2023 klo 10.40.22 UTC+2 Hannu Poropudas kirjoitti:
> > > > maanantai 30. lokakuuta 2023 klo 12.35.05 UTC+2 Hannu Poropudas kirjoitti:
> > > > > maanantai 30. lokakuuta 2023 klo 9.59.22 UTC+2 Hannu Poropudas kirjoitti:
> > > > > > perjantai 27. lokakuuta 2023 klo 10.46.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > torstai 26. lokakuuta 2023 klo 11.04.40 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > keskiviikko 25. lokakuuta 2023 klo 14.37.35 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > > > > > > > > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > > > > > > > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > > > > > > Spherically symmetric metrics which satisfies
> > > > > > > > > > > > > > > Einstein's vacuum field equations.
> > > > > > > > > > > > > > >
> > > > > > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > > > > > >
> > > > > > > > > > > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > > > > > > > > > > >
> > > > > > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > > > > > >
> > > > > > > > > > > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > > > > > > > > > > >
> > > > > > > > > > > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > > > > > > > > > > >
> > > > > > > > > > > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > > > > > > > > > > >
> > > > > > > > > > > > > > > There exist a book called something like
> > > > > > > > > > > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > > > > > > > > > > which have about 740 pages and
> > > > > > > > > > > > > > > I don't know if this solution is among them?
> > > > > > > > > > > > > > >
> > > > > > > > > > > > > > > Three singularity points of the metrics are the following:
> > > > > > > > > > > > > > >
> > > > > > > > > > > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > > > > > > > > > > >
> > > > > > > > > > > > > > >
> > > > > > > > > > > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > > > > > > > > > > >
> > > > > > > > > > > > > > > Reference:
> > > > > > > > > > > > > > > Tolman R. C., 1934.
> > > > > > > > > > > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > > > > > > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > > > > > > > > > > >
> > > > > > > > > > > > > > > Best Regrads,
> > > > > > > > > > > > > > >
> > > > > > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > > > > > >
> > > > > > > > > > > > > > > Kolamäentie 9E
> > > > > > > > > > > > > > > 90900 Kiiminki / Oulu
> > > > > > > > > > > > > > > Finland
> > > > > > > > > > > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > > > > > > > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > > > > > > > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > > > > > > > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > > > > > > > > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > MG = 6.292090968*10^11,
> > > > > > > > > > > > > > 2*MG=1.258418194*10^12.
> > > > > > > > > > > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > > > > > > > > > > +,- sign for integral
> > > > > > > > > > > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > > > > > > > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > and
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > -1.103327381*10^12<=rr<=0
> > > > > > > > > > > > > > +,- sign for integral
> > > > > > > > > > > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > > > > > > > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > > > > > > > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > > > > > > > > > > Real parts = 0 in these integrals.
> > > > > > > > > > > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > > > > > > > > > > How to interpret these Imaginary angle plots?
> > > > > > > > > > > > > >
> > > > > > > > > > > > > > Best Regards,
> > > > > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > > > > Your solution is either:
> > > > > > > > > > > > >
> > > > > > > > > > > > > (a) incorrect, or:
> > > > > > > > > > > > >
> > > > > > > > > > > > > (b) isometric to Schwarzschild's.
> > > > > > > > > > > > >
> > > > > > > > > > > > > Don't waste your time.
> > > > > > > > > > > > >
> > > > > > > > > > > > > --
> > > > > > > > > > > > > Jan
> > > > > > > > > > > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > > > > > > > > > > >
> > > > > > > > > > > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > > > > > > > > > > >
> > > > > > > > > > > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > > > > > > > > > > but you are correct in point of view that it may not be physically acceptable solution
> > > > > > > > > > > > of these equations at our present orthodoxic physical knowledge.
> > > > > > > > > > > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > > > > > > > > > > >
> > > > > > > > > > > > There exist also few other integration constants from Euler-Largrange equations,
> > > > > > > > > > > > but I have selected randomly only one couple of them in this example calculation.
> > > > > > > > > > > >
> > > > > > > > > > > > Hannu
> > > > > > > > > > > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > > > > > > > > > > constants from Euler-Largrange equations:
> > > > > > > > > > >
> > > > > > > > > > > I mark now for convenience T = coordinate time and t = proper time.
> > > > > > > > > > >
> > > > > > > > > > > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > > > > > > > > > > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > > > > > > > > > > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> > > > > > > > > > >
> > > > > > > > > > > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > > > > > > > > > > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > > > > > > > > > > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > > > > > > > > > > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > > > > > > > > > > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> > > > > > > > > > >
> > > > > > > > > > > K1 = +,- 0.7072727132*I,
> > > > > > > > > > > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> > > > > > > > > > >
> > > > > > > > > > > And I selected here randomly as an example two constants of integration
> > > > > > > > > > > in this my two analytic solutions calculation:
> > > > > > > > > > >
> > > > > > > > > > > K1 = - 0.7072727132*I
> > > > > > > > > > > and
> > > > > > > > > > > K2 = 0.5943942676 - 0.5943942676*I
> > > > > > > > > > >
> > > > > > > > > > > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > > > > > > > > > > (Phi(P) is pure imaginary angle and r(P) is real distance.
> > > > > > > > > > > Phiphi(P) is pure imaginary angle and rr(P) is real distance).
> > > > > > > > > > >
> > > > > > > > > > > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > > > > > > > > > > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > > > > > > > > > > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> > > > > > > > > > >
> > > > > > > > > > > Those both plots resemble somehow pendulum orbit ?
> > > > > > > > > > >
> > > > > > > > > > > I have NO physical interpretations of these solutions
> > > > > > > > > > > and I think that these have NO real physical applications.
> > > > > > > > > > >
> > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
> > > > > > > > > >
> > > > > > > > > > It seems to me that this integral is too complicated to calculate analytically, but it could be so
> > > > > > > > > > with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> > > > > > > > > > in this above case that the coordinate time T could be two dimensional complex number ?
> > > > > > > > > >
> > > > > > > > > > This also seems to support what I said above.
> > > > > > > > > > I have NO physical interpretations of these solutions
> > > > > > > > > > and I think at the moment that these have NO real physical applications.
> > > > > > > > > >
> > > > > > > > > > And we should study two dimensional complex mathematics of two dimensional
> > > > > > > > > > coordinate time (T) in this complicated integral better,
> > > > > > > > > > if we try to better understand this situation,
> > > > > > > > > > if this would be sensible at all ?
> > > > > > > > > >
> > > > > > > > > > Best Regards,
> > > > > > > > > > Hannu Poropudas
> > > > > > > > > CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
> > > > > > > > > Sorry that I confused these two letters.
> > > > > > > > >
> > > > > > > > > Hannu
> > > > > > > > I found one interesting reference, which show that there
> > > > > > > > are really only few astrophysically significant exact solutions to Einstein's field equations.
> > > > > > > >
> > > > > > > > Ishak, M. 2015.
> > > > > > > > Exact Solutions to Einstein's Equations in Astrophysics.
> > > > > > > > Texas Symposium on Relativistic Astrophysics, Geneva 2015.
> > > > > > > > 33 pages.
> > > > > > > > https://personal.utdallas.edu/~mishak/ExactSolutionsInAstrophysics_Ishak_Final.pdf
> > > > > > > >
> > > > > > > > Please take a look.
> > > > > > > >
> > > > > > > > Best Regards,
> > > > > > > > Hannu Poropudas
> > > > > > > In order to me more mathematically complete I calculate also
> > > > > > > approximate proper time t integral (primitive function)
> > > > > > > and plotted both real part and imaginary part of it.
> > > > > > > I have NO interpretations of these.
> > > > > > >
> > > > > > > ># Approximate proper time t integral calculated HP 27.10.2023
> > > > > > > ># REMARK: My letter convenience t=proper time T=coordinate time
> > > > > > > ># Real part and Imaginary part plotted
> > > > > > > >#K3:=0;
> > > > > > > >#K1 := -0.7072727132*I;
> > > > > > > >#K2 := 0.5943942676-0.5943942676*I;
> > > > > > > >#m := MG;
> > > > > > > >#MG := 0.6292090968e12;
> > > > > > > >#2*MG := 0.1258418194e13;
> > > > > > > >#a2<=r<=a1, definition area
> > > > > > > >#a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > > > >
> > > > > > > >#Real part of primitive function t approx.
> > > > > > > ># Series approx at r = MG up to 7 degree.
> > > > > > +,- sign for REIF(r)
> > > > > > > >REIF:=r->-0.9292411964e-8*r+0.8717127610e-20*r^2+0.4446277653e-31*(r-0.6292090968e12)^3+0.2329675135e-42*(r-0.6292090968e12)^4+0.3071201158e-47*(r-0.6292090968e12)^5+0.2827253683e-58*(r-0.6292090968e12)^6+0.2065510967e-69*(r-0.6292090968e12)^7;
> > > > > > >
> > > > > > > >#Imaginary part of primitive function t approx.
> > > > > > > >># Series approx at r = MG up to 7 degree.
> > > > > > +,- sign for IMIF(r)
> > > > > > > >IMIF:=r->-0.2217185446e-7*r+0.3637453960e-19*r^2+0.1018586871e-30*(r-0.6292090968e12)^3+0.3376062792e-42*(r-0.6292090968e12)^4+0.4794788388e-47*(r-0.6292090968e12)^5+0.2475402813e-58*(r-0.6292090968e12)^6+0.1233132761e-69*(r-0.6292090968e12)^7;
> > > > > > >
> > > > > > > > #a2<=r<=a1, definition area
> > > > > > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > > > > > #MG := 0.6292090968e12;
> > > > > > > > #2*MG := 0.1258418194e13;
> > > > > > >
> > > > > > +,- sign for REIF(r)
> > > > > > > >plot(REIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > > > > > >
> > > > > > > > #a2<=r<=a1, definition area
> > > > > > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > > > > > #MG := 0.6292090968e12;
> > > > > > > > #2*MG := 0.1258418194e13;
> > > > > > >
> > > > > > +,- sign for IMIF(r)
> > > > > > > >plot(IMIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > > > > > >
> > > > > > >
> > > > > > > Best Regards,
> > > > > > > Hannu Poropudas
> > > > > I calculated also coordinate time T series approximation up to 7 degree at r=MG,
> > > > > (REMARK: This is preliminary calculation I have not rechecked it yet):
> > > > >
> > > > > If my approximate calculations are correct, then it is possible to calculate more
> > > > > "quantities" in this strange black hole of two event horizons space-time of mine,
> > > > > if this is sensible at all?
> > > > >
> > > > > ># Two branches of coordinate time T series approx.30.10.2023 H.P..
> > > > >
> > > > > ># This coordinate time T is also complex number with two branches
> > > > > ># (real and Imaginary)
> > > > >
> > > > > >#Coordinate time T series approx. up to 7 degree
> > > > > ># function-(series approx function), not integrated here
> > > > > >#(+)branch only used error estimation (compare proper time case)
> > > > >
> > > > > ># +,- formula (Primitive function, Real part)
> > > > >
> > > > > >REIG:=r->-2.851064818*ln(abs(r-0.6292090968e12))-.8288703850*(1-csgn(r-0.6292090968e12))*Pi+0.3330424925e12/(r-0.6292090968e12)-0.2939012715e-11*r;
> > > > >
> > > > > ># error estimation max positive side about 8.3*10^(-9)
> > > > > ># error estimation max abs negative side about -4.2*10^(-9)
> > > > > ># Both max are at r=MG, other definition area error = about 0
> > > > >
> > > > > ># +,- formula (Primitive function, Imaginary part)
> > > > >
> > > > > >IMIG:=r->-1.425532409*(1-csgn(r-0.6292090968e12))*Pi+1.657740770*ln(abs(r-0.6292090968e12))-0.2312741379e12/(r-0.6292090968e12)+0.1298075147e-11*r;
> > > > >
> > > > > ># error estimation max positive side about 3.2*10^(-9)
> > > > > ># error estimation max abs negative side about -6.4*10^(-9)
> > > > > ># Both max are at r=MG, other definition area error = about 0
> > > > >
> > > > > Best Regards,
> > > > > Hannu Poropudas
> > > > I'am sorry about error in 30.10.2023 posting of mine.
> > > >
> > > > Here is CORRECTED 30.10.2023 posting of mine
> > > >
> > > > ># CORRECTED. Two branches of coordinate time T series approx.31.10..2023 H.P.
> > > > ># This coordinate time T is also complex number with two branches ># (real and Imaginary)
> > > >
> > > > >#Coordinate time T series approx. up to 7 degree
> > > > ># function-(series approx function), not integrated here
> > > > >#(+)branch only used error estimation (compare proper time case)
> > > >
> > > > ># +,- formula (Primitive function, Real part)
> > > > >REIG:=r->-1.425532409*ln(abs(r-0.6292090968e12))-.4144351924*(1-csgn(r-0.6292090968e12))*Pi+0.3330424925e12/(r-0.6292090968e12)-0.2939012715e-11*r;
> > > >
> > > > ># error estimation max positive side about 7.5*10^(-13)
> > > > ># error estimation max abs negative side about -1.3*10^(-12)
> > > > ># +,- formula (Primitive function, Imaginary part)
> > > > >IMIG:=r->-0.7127662045*(1-csgn(r-0.6292090968e12))*Pi+0.8288703849*ln(abs(r-0.6292090968e12))-0.2312741379e12/(r-0.6292090968e12)+0.1298075147e-11*r;
> > > >
> > > > ># error estimation max positive side about 4.8*10^(-13)
> > > > ># error estimation max abs negative side about -2.4*10^(-13)
> > > >
> > > > Best Regards,
> > > > Hannu Poropudas
> > > ONE NOTE about one "little strange" function used in my maple calculations
> > >
> > > csgn(r-0.6292090968e12) = (r-0.6292090968e12)/abs(r-0.6292090968e12)
> > >
> > > Hannu
> > You mentioned the sign term reflecting that earlier you wrote from your derivation,
> > that part of it was as under-defined or de facto, a compensating term.
> >
> > It seems what you are integrating is power terms resolving, why the halfs either
> > way have a "pseudo" product, what is a law that results why in your terms, they add
> > up, if you haven't explained "why" it's legal those terms wouldn't resolve,
> > radiating usually.
> >
> > It seems those would be waves falling so would result "why", is because, they
> > are under the area terms, the absorption or radiation, how then those have to
> > add up, to make the estimate, which as you note appears accurate.
> 1. I put more clearly my incomplete error estimation procedure here:
>
> Solution was actually +,- Int(function(r),r) and only +function(r) was used
> in error estimation, -function(r) was not used in error estimation for my convenience,
> so error estimation is was not complete in this sense, but it gives correctly order of the error?
>
> Error estimation was made only of (+) branch, of function(r) and (-) branch of function(r) was not used ,
> so error estimation was not complete in that sense, but I made so for my convenience not
> to make too long posting about error estimation.
>
> function(r) - (series approx of function(r)),
>
> function(r) is NOT integrated here due it is too complicated to do that.
>
> (+) branch of the function(r) only used in error estimation (compare proper time case,
> similar way was done in this case in error estimation) .
>
> 2. It should be remembered here that all mathematics in this special example was done with
> complex numbers inside r=2*MG event horizon.
>
> 3. I only tried to point out here that how complex mathematics can be used to make calculations in
> this special example case which I have selected to calculate completely.
>
> 4. I have made here NO physical interpretations about this special example, I leave to make them to those
> who understand astrophysics better than me, if this was sensible at all ?
>
> Best Regards,
> Hannu Poropudas


Click here to read the complete article

tech / sci.physics.relativity / I found one spherically symmetric solution of Einstein's vacuum field equations

Pages:12
server_pubkey.txt

rocksolid light 0.9.81
clearnet tor