Rocksolid Light

Welcome to novaBBS (click a section below)

mail  files  register  newsreader  groups  login

Message-ID:  

"I'm not afraid of dying, I just don't want to be there when it happens." -- Woody Allen


tech / sci.physics.relativity / I found one spherically symmetric solution of Einstein's vacuum field equations

SubjectAuthor
* I found one spherically symmetric solution of Einstein's vacuum field equationsHannu Poropudas
+* Re: I found one spherically symmetric solution of Einstein's vacuumJanPB
|`- Re: I found one spherically symmetric solution of Einstein's vacuumRoss Finlayson
+- Re: I found one spherically symmetric solution of Einstein's vacuumpatdolan
`* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
 `* Re: I found one spherically symmetric solution of Einstein's vacuum field equatiJanPB
  +- Re: I found one spherically symmetric solution of Einstein's vacuumReinel Badoff
  `* Re: I found one spherically symmetric solution of Einstein's vacuum field equatiHannu Poropudas
   +* Re: I found one spherically symmetric solution of Einstein's vacuumRoss Finlayson
   |`- Re: I found one spherically symmetric solution of Einstein's vacuummitchr...@gmail.com
   `* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
    `* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     +* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     |`* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     | `* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     |  +- Re: I found one spherically symmetric solution of Einstein's vacuummitchr...@gmail.com
     |  +* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     |  |+- Re: I found one spherically symmetric solution of Einstein's vacuumRoss Finlayson
     |  |`* Re: I found one spherically symmetric solution of Einstein's vacuumpatdolan
     |  | `* Re: I found one spherically symmetric solution of Einstein's vacuumRoss Finlayson
     |  |  `* Re: I found one spherically symmetric solution of Einstein's vacuumpatdolan
     |  |   `- Re: I found one spherically symmetric solution of Einstein's vacuummitchr...@gmail.com
     |  `* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     |   `* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     |    +* Re: I found one spherically symmetric solution of Einstein's vacuumpatdolan
     |    |`* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     |    | `- Re: I found one spherically symmetric solution of Einstein's vacuumpatdolan
     |    `* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     |     `* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     |      `* Re: I found one spherically symmetric solution of Einstein's vacuumRoss Finlayson
     |       `* Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     |        `- Re: I found one spherically symmetric solution of Einstein's vacuumHannu Poropudas
     `* Re: I found one spherically symmetric solution of Einstein's vacuumJanPB
      `- Re: I found one spherically symmetric solution of Einstein's vacuum field equatiThe Starmaker

Pages:12
I found one spherically symmetric solution of Einstein's vacuum field equations

<cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=126916&group=sci.physics.relativity#126916

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:a05:620a:6696:b0:76d:e9c0:9109 with SMTP id qh22-20020a05620a669600b0076de9c09109mr450486qkn.7.1697358921038;
Sun, 15 Oct 2023 01:35:21 -0700 (PDT)
X-Received: by 2002:a05:6871:5213:b0:1e9:baa0:63f6 with SMTP id
ht19-20020a056871521300b001e9baa063f6mr3444561oac.2.1697358920712; Sun, 15
Oct 2023 01:35:20 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer03.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Sun, 15 Oct 2023 01:35:20 -0700 (PDT)
Injection-Info: google-groups.googlegroups.com; posting-host=85.194.208.161; posting-account=1H9XwwoAAADT6KUHcLIWMoply9bM_d5b
NNTP-Posting-Host: 85.194.208.161
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
Subject: I found one spherically symmetric solution of Einstein's vacuum field equations
From: haporop...@gmail.com (Hannu Poropudas)
Injection-Date: Sun, 15 Oct 2023 08:35:21 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 2233
 by: Hannu Poropudas - Sun, 15 Oct 2023 08:35 UTC

Spherically symmetric metrics which satisfies
Einstein's vacuum field equations.

(c=1,G=1 units)

matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])

(c=1,G=1 units)

ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2

(m -> m*G/c^2 , if SI-units are used.)

I don't know that would this solution have any astrophysical applications?

There exist a book called something like
"Exact Solutions of the Einstein Field Equations",
which have about 740 pages and
I don't know if this solution is among them?

Three singularity points of the metrics are the following:

r = 0, r = m*G/c^2 and r = 2*m*G/c^2.

I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.

Reference:
Tolman R. C., 1934.
Effect of inhomogeneity on cosmological models.
Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.

Best Regrads,

Hannu Poropudas

Kolamäentie 9E
90900 Kiiminki / Oulu
Finland

Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<0d29f5fe-1325-4f79-898d-01610b7e7227n@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=126972&group=sci.physics.relativity#126972

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:ac8:754e:0:b0:416:fd6d:7d63 with SMTP id b14-20020ac8754e000000b00416fd6d7d63mr24289qtr.2.1697502101950;
Mon, 16 Oct 2023 17:21:41 -0700 (PDT)
X-Received: by 2002:a4a:6b19:0:b0:57b:6b2a:df8 with SMTP id
g25-20020a4a6b19000000b0057b6b2a0df8mr182569ooc.1.1697502101690; Mon, 16 Oct
2023 17:21:41 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer01.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Mon, 16 Oct 2023 17:21:41 -0700 (PDT)
In-Reply-To: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=162.195.247.210; posting-account=Y2v6DQoAAACGpOrX04JGhSdsTevCdArN
NNTP-Posting-Host: 162.195.247.210
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <0d29f5fe-1325-4f79-898d-01610b7e7227n@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: film...@gmail.com (JanPB)
Injection-Date: Tue, 17 Oct 2023 00:21:41 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 2848
 by: JanPB - Tue, 17 Oct 2023 00:21 UTC

On Sunday, October 15, 2023 at 1:35:22 AM UTC-7, Hannu Poropudas wrote:
> Spherically symmetric metrics which satisfies
> Einstein's vacuum field equations.
>
> (c=1,G=1 units)
>
> matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
>
> (c=1,G=1 units)
>
> ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
>
> (m -> m*G/c^2 , if SI-units are used.)
>
> I don't know that would this solution have any astrophysical applications?
>
> There exist a book called something like
> "Exact Solutions of the Einstein Field Equations",
> which have about 740 pages and
> I don't know if this solution is among them?
>
> Three singularity points of the metrics are the following:
>
> r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
>
>
> I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
>
> Reference:
> Tolman R. C., 1934.
> Effect of inhomogeneity on cosmological models.
> Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
>
> Best Regrads,
>
> Hannu Poropudas
>
> Kolamäentie 9E
> 90900 Kiiminki / Oulu
> Finland

There is only one solution to the spherically symmetric vacuum equations
(see e.g. Hawking & Ellis).

So you either made a mistake somewhere or your solution is the same
as Schwarzschild's, only written differently.

--
Jan

Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<2d15b03a-e658-4e85-96fe-838d6834e3a2n@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127009&group=sci.physics.relativity#127009

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:ad4:4c12:0:b0:66d:b84:4c02 with SMTP id bz18-20020ad44c12000000b0066d0b844c02mr77645qvb.3.1697593154130;
Tue, 17 Oct 2023 18:39:14 -0700 (PDT)
X-Received: by 2002:a05:6870:1594:b0:1e9:adea:77fd with SMTP id
j20-20020a056870159400b001e9adea77fdmr1833482oab.7.1697593153777; Tue, 17 Oct
2023 18:39:13 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer01.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Tue, 17 Oct 2023 18:39:13 -0700 (PDT)
In-Reply-To: <0d29f5fe-1325-4f79-898d-01610b7e7227n@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=97.126.102.120; posting-account=WH2DoQoAAADZe3cdQWvJ9HKImeLRniYW
NNTP-Posting-Host: 97.126.102.120
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com> <0d29f5fe-1325-4f79-898d-01610b7e7227n@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <2d15b03a-e658-4e85-96fe-838d6834e3a2n@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: ross.a.f...@gmail.com (Ross Finlayson)
Injection-Date: Wed, 18 Oct 2023 01:39:14 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 3736
 by: Ross Finlayson - Wed, 18 Oct 2023 01:39 UTC

On Monday, October 16, 2023 at 5:21:43 PM UTC-7, JanPB wrote:
> On Sunday, October 15, 2023 at 1:35:22 AM UTC-7, Hannu Poropudas wrote:
> > Spherically symmetric metrics which satisfies
> > Einstein's vacuum field equations.
> >
> > (c=1,G=1 units)
> >
> > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> >
> > (c=1,G=1 units)
> >
> > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> >
> > (m -> m*G/c^2 , if SI-units are used.)
> >
> > I don't know that would this solution have any astrophysical applications?
> >
> > There exist a book called something like
> > "Exact Solutions of the Einstein Field Equations",
> > which have about 740 pages and
> > I don't know if this solution is among them?
> >
> > Three singularity points of the metrics are the following:
> >
> > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> >
> >
> > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> >
> > Reference:
> > Tolman R. C., 1934.
> > Effect of inhomogeneity on cosmological models.
> > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> >
> > Best Regrads,
> >
> > Hannu Poropudas
> >
> > Kolamäentie 9E
> > 90900 Kiiminki / Oulu
> > Finland
> There is only one solution to the spherically symmetric vacuum equations
> (see e.g. Hawking & Ellis).
>
> So you either made a mistake somewhere or your solution is the same
> as Schwarzschild's, only written differently.
>
> --
> Jan

Ha, spherically linearly, spherically rotationally, symmetric, ....

"Only one", ....

It's usually Schwarzschild and Chandrasekhar on the inside,
and Kruszkeles and Kerr, or so, on the outside, one stationary black hole, spherical.

Outside the forces are like inverse cube outside but inside linear,
the inverse square singularity, cube wall, here that the inertial
system is usualy considred to be inside and stationary, also,
the stationary, non-rotating well of a gravitational black hole.

Mathematically, ....

It seems you are to post it to "arxiv" then have others include it.

Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<c8f06b0d-9a66-47b2-9565-cceaf8872217n@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127010&group=sci.physics.relativity#127010

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:ad4:5a4f:0:b0:66d:1126:6173 with SMTP id ej15-20020ad45a4f000000b0066d11266173mr81430qvb.7.1697604111944;
Tue, 17 Oct 2023 21:41:51 -0700 (PDT)
X-Received: by 2002:a05:6870:3290:b0:1e9:c24f:ff8e with SMTP id
q16-20020a056870329000b001e9c24fff8emr2016022oac.0.1697604111684; Tue, 17 Oct
2023 21:41:51 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer02.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Tue, 17 Oct 2023 21:41:51 -0700 (PDT)
In-Reply-To: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=2601:602:9b00:7c40:c5bd:7c54:7204:caf3;
posting-account=9sfziQoAAAD_UD5NP4mC4DjcYPHqoIUc
NNTP-Posting-Host: 2601:602:9b00:7c40:c5bd:7c54:7204:caf3
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <c8f06b0d-9a66-47b2-9565-cceaf8872217n@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: patdo...@comcast.net (patdolan)
Injection-Date: Wed, 18 Oct 2023 04:41:51 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 3298
 by: patdolan - Wed, 18 Oct 2023 04:41 UTC

On Sunday, October 15, 2023 at 1:35:22 AM UTC-7, Hannu Poropudas wrote:
> Spherically symmetric metrics which satisfies
> Einstein's vacuum field equations.
>
> (c=1,G=1 units)
>
> matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
>
> (c=1,G=1 units)
>
> ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
>
> (m -> m*G/c^2 , if SI-units are used.)
>
> I don't know that would this solution have any astrophysical applications?
>
> There exist a book called something like
> "Exact Solutions of the Einstein Field Equations",
> which have about 740 pages and
> I don't know if this solution is among them?
>
> Three singularity points of the metrics are the following:
>
> r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
>
>
> I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
>
> Reference:
> Tolman R. C., 1934.
> Effect of inhomogeneity on cosmological models.
> Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
>
> Best Regrads,
>
> Hannu Poropudas
>
> Kolamäentie 9E
> 90900 Kiiminki / Oulu
> Finland

I congratulate you, H. Poropudas. Is it Doctor Poropudas by chance? In any event, I would like to request that you apply your new metric to a) a photon grazing the surface of the sun, and b) the apogee of planet Mercury. If you decide to do this, then will you please report back your results to this forum at your earliest convenience. Thank you.

PS--What have you heard about a new gadanken experiment that is reputed to have originated in the Northwestern region of the United States which appears to be taking the world of relativity by storm. I believe they call it the Big Ben Paradox.

Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127045&group=sci.physics.relativity#127045

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:a05:620a:28c3:b0:773:af69:e607 with SMTP id l3-20020a05620a28c300b00773af69e607mr31958qkp.10.1697700161721;
Thu, 19 Oct 2023 00:22:41 -0700 (PDT)
X-Received: by 2002:a05:6870:458f:b0:1e9:baa0:63f6 with SMTP id
y15-20020a056870458f00b001e9baa063f6mr794498oao.2.1697700161318; Thu, 19 Oct
2023 00:22:41 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer03.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Thu, 19 Oct 2023 00:22:40 -0700 (PDT)
In-Reply-To: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=130.231.159.203; posting-account=1H9XwwoAAADT6KUHcLIWMoply9bM_d5b
NNTP-Posting-Host: 130.231.159.203
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: haporop...@gmail.com (Hannu Poropudas)
Injection-Date: Thu, 19 Oct 2023 07:22:41 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 4135
 by: Hannu Poropudas - Thu, 19 Oct 2023 07:22 UTC

sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> Spherically symmetric metrics which satisfies
> Einstein's vacuum field equations.
>
> (c=1,G=1 units)
>
> matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
>
> (c=1,G=1 units)
>
> ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
>
> (m -> m*G/c^2 , if SI-units are used.)
>
> I don't know that would this solution have any astrophysical applications?
>
> There exist a book called something like
> "Exact Solutions of the Einstein Field Equations",
> which have about 740 pages and
> I don't know if this solution is among them?
>
> Three singularity points of the metrics are the following:
>
> r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
>
>
> I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
>
> Reference:
> Tolman R. C., 1934.
> Effect of inhomogeneity on cosmological models.
> Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
>
> Best Regrads,
>
> Hannu Poropudas
>
> Kolamäentie 9E
> 90900 Kiiminki / Oulu
> Finland

I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
due three integration constants from Euler-Lagrange equations does not have
same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)

MG = 6.292090968*10^11,
2*MG=1.258418194*10^12.
I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):

2.720522631*10^11<=r<=8.306841627*10^11
+,- sign for integral
phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)

and

-1.103327381*10^12<=rr<=0
+,- sign for integral
phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)

I calculated also these integrals but their formulae are too long to copy here.
Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
Real parts = 0 in these integrals.
How to interpret pure imaginary phi and phiphi angles?
How to interpret these Imaginary angle plots?

Best Regards,
Hannu Poropudas

Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127058&group=sci.physics.relativity#127058

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:a05:6214:1790:b0:66d:2da7:ab78 with SMTP id ct16-20020a056214179000b0066d2da7ab78mr58631qvb.10.1697740866736; Thu, 19 Oct 2023 11:41:06 -0700 (PDT)
X-Received: by 2002:a9d:7f94:0:b0:6bd:c74e:f21d with SMTP id t20-20020a9d7f94000000b006bdc74ef21dmr854100otp.4.1697740866500; Thu, 19 Oct 2023 11:41:06 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!feeder.usenetexpress.com!tr3.iad1.usenetexpress.com!69.80.99.15.MISMATCH!border-1.nntp.ord.giganews.com!nntp.giganews.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Thu, 19 Oct 2023 11:41:06 -0700 (PDT)
In-Reply-To: <1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=162.195.247.210; posting-account=Y2v6DQoAAACGpOrX04JGhSdsTevCdArN
NNTP-Posting-Host: 162.195.247.210
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com> <1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum field equations
From: film...@gmail.com (JanPB)
Injection-Date: Thu, 19 Oct 2023 18:41:06 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
Lines: 97
 by: JanPB - Thu, 19 Oct 2023 18:41 UTC

On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > Spherically symmetric metrics which satisfies
> > Einstein's vacuum field equations.
> >
> > (c=1,G=1 units)
> >
> > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> >
> > (c=1,G=1 units)
> >
> > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> >
> > (m -> m*G/c^2 , if SI-units are used.)
> >
> > I don't know that would this solution have any astrophysical applications?
> >
> > There exist a book called something like
> > "Exact Solutions of the Einstein Field Equations",
> > which have about 740 pages and
> > I don't know if this solution is among them?
> >
> > Three singularity points of the metrics are the following:
> >
> > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> >
> >
> > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> >
> > Reference:
> > Tolman R. C., 1934.
> > Effect of inhomogeneity on cosmological models.
> > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> >
> > Best Regrads,
> >
> > Hannu Poropudas
> >
> > Kolamäentie 9E
> > 90900 Kiiminki / Oulu
> > Finland
> I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> due three integration constants from Euler-Lagrange equations does not have
> same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
>
> MG = 6.292090968*10^11,
> 2*MG=1.258418194*10^12.
> I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
>
> 2.720522631*10^11<=r<=8.306841627*10^11
> +,- sign for integral
> phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
>
> and
>
> -1.103327381*10^12<=rr<=0
> +,- sign for integral
> phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
>
> I calculated also these integrals but their formulae are too long to copy here.
> Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> Real parts = 0 in these integrals.
> How to interpret pure imaginary phi and phiphi angles?
> How to interpret these Imaginary angle plots?
>
> Best Regards,
> Hannu Poropudas

Your solution is either:

(a) incorrect, or:

(b) isometric to Schwarzschild's.

Don't waste your time.

--
Jan

Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<ugs0lv$4d7a$2@paganini.bofh.team>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127061&group=sci.physics.relativity#127061

  copy link   Newsgroups: sci.physics.relativity sci.physics sci.math
Followup: sci.physics.relativity,sci.physics,sci.math
Path: i2pn2.org!i2pn.org!weretis.net!feeder8.news.weretis.net!paganini.bofh.team!not-for-mail
From: rnb...@lfrrafbe.al (Reinel Badoff)
Newsgroups: sci.physics.relativity,sci.physics,sci.math
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
Followup-To: sci.physics.relativity,sci.physics,sci.math
Date: Thu, 19 Oct 2023 19:39:43 -0000 (UTC)
Organization: To protect and to server
Message-ID: <ugs0lv$4d7a$2@paganini.bofh.team>
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com>
<1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
Mime-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 19 Oct 2023 19:39:43 -0000 (UTC)
Injection-Info: paganini.bofh.team; logging-data="144618"; posting-host="VmjwiD8ZDT7xTW/1ZylfJw.user.paganini.bofh.team"; mail-complaints-to="usenet@bofh.team"; posting-account="9dIQLXBM7WM9KzA+yjdR4A";
User-Agent: Xnews/2006.08.05
Cancel-Lock: sha256:kb7ZU5UDUc+VBI3BcOmXAZaWT3d4+P5oKt7gj5thYp0=
X-Notice: Filtered by postfilter v. 0.9.3
X-Face: ,I=#m=&Igm-EH4[-O<UhoR&zuEDbj`6O&*2(Y`!a,b7RIwv#l;+?MbbowiP,:]u2
&4<=Ax,/P+.6A0z|e%eg<=g"K%PIJNwe3m?WU*CiF[kB+;A5t+vOmS%$C0x7*5JEk]5J5YG
Pl+M]&M~/SH]Y[PaDbsMe"DSuTuzqM?%$UP$U=XMhMnx*WN+iI`d@d!Q#N5U/oD--zzls=*
\s[S~M0L\k}K5I8|aRm%
Face: iVBORw0KGgoAAAANSUhEUgAAADAAAAAwBAMAAAClLOS0AAAAHlBMVEVsTkPHjC7/
sVoVEQw6NURSJg2+jVq+sadSaYmvSSapPBPtAAACWElEQVQ4jU2TQWsbMRCFRdu
18VELDei4Ohh8M8gbeizEoTmqbKdlb3EgMb6GUuVoiunu0TJsQP+2bySt7b3tfB
rN6M0b0cdvPymIjGnMWvR95976XiQgJkEIEFOv131/AV+FEDNRNIa/h2tAFgnEt
xmzuoA1x4sRmIczuCcSkTRn0DE4UAQ5A511GexxGHHOaRisOpcAR/j8mDOCPVkE
ubadhYGa+gde6ABEDtnwrrUMVBdT50Yw8/NQVlrrCsTabQYNBS+lLgGkVAPRrwj
ujbGbsooJyFABN0dwB8Bn9RmYOoN6os+fVH4wJoPl6QIqFY7GbBOwTxegr0F7DW
Q4NmYaQd2WsWzJURQ/A5PBSS/wntACdAwOtS213IUA0IajsKgRRcQ4/IsKAVIBt
ENRAPAED3aywTV6vrtRH/Q8iAJjZ7DfvUOoKpw2WnmFpogS+Ld7QUNQqtQLzyqe
Abqs0hsAkEq0TC5JApYZYCD05Rro8ZEA396iGZ50/E/z83zVNKrLQJbqVEm9IB/
ghxH85VaQoDBVHwfYJ9Dx2FB2Hqj1aeRRq37/LKVXJY+CP6Jt8tXhznhZVnwLTn
+v2AoO7a5hyhnamp9wV0HlgmB39yY4btr09Dm0rwaIy4OKu7J855ewE7xK29OJx
sBXdUgAzQ1pe1bCrNxvFPEy+iCg27hVRsBcH2HFIJNxVV43BlsAMQvZhxewdM+N
eZyFWER+zjcB3L4CvATWBOoONNa4de7PY7GFFFgRjo9g+goB3DZkmaixGfzU2jk
MNaRFJ/qUAd2kuapjIjaD/0mwUDiKQ6cGAAAAAElFTkSuQmCC
 by: Reinel Badoff - Thu, 19 Oct 2023 19:39 UTC

JanPB wrote:

> On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas
>> I calculated also these integrals but their formulae are too long to
>> copy here. Both sign can be taken into account when plotting Imaginary
>> parts 0<=P<=Pi. Real parts = 0 in these integrals. How to interpret
>> pure imaginary phi and phiphi angles? How to interpret these Imaginary
>> angle plots? Best Regards, Hannu Poropudas
>
> Your solution is either: (a) incorrect, or: (b) isometric to
> Schwarzschild's. Don't waste your time.

anyone that's not constantly on the verge of tears over what kikes have
done to ruin reality on this planet, simply doesn't understand what kikes
have done to ruin reality on this planet ··· Faggot kike channel

Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127090&group=sci.physics.relativity#127090

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:ac8:44d5:0:b0:41b:8011:32ee with SMTP id b21-20020ac844d5000000b0041b801132eemr11858qto.10.1697784850909; Thu, 19 Oct 2023 23:54:10 -0700 (PDT)
X-Received: by 2002:a05:6808:199:b0:3b2:f40e:9498 with SMTP id w25-20020a056808019900b003b2f40e9498mr304839oic.11.1697784850550; Thu, 19 Oct 2023 23:54:10 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!feeder.usenetexpress.com!tr2.iad1.usenetexpress.com!69.80.99.18.MISMATCH!border-1.nntp.ord.giganews.com!nntp.giganews.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Thu, 19 Oct 2023 23:54:10 -0700 (PDT)
In-Reply-To: <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=130.231.159.203; posting-account=1H9XwwoAAADT6KUHcLIWMoply9bM_d5b
NNTP-Posting-Host: 130.231.159.203
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com> <1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum field equations
From: haporop...@gmail.com (Hannu Poropudas)
Injection-Date: Fri, 20 Oct 2023 06:54:10 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
Lines: 119
 by: Hannu Poropudas - Fri, 20 Oct 2023 06:54 UTC

torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > Spherically symmetric metrics which satisfies
> > > Einstein's vacuum field equations.
> > >
> > > (c=1,G=1 units)
> > >
> > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > >
> > > (c=1,G=1 units)
> > >
> > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > >
> > > (m -> m*G/c^2 , if SI-units are used.)
> > >
> > > I don't know that would this solution have any astrophysical applications?
> > >
> > > There exist a book called something like
> > > "Exact Solutions of the Einstein Field Equations",
> > > which have about 740 pages and
> > > I don't know if this solution is among them?
> > >
> > > Three singularity points of the metrics are the following:
> > >
> > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > >
> > >
> > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > >
> > > Reference:
> > > Tolman R. C., 1934.
> > > Effect of inhomogeneity on cosmological models.
> > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > >
> > > Best Regrads,
> > >
> > > Hannu Poropudas
> > >
> > > Kolamäentie 9E
> > > 90900 Kiiminki / Oulu
> > > Finland
> > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > due three integration constants from Euler-Lagrange equations does not have
> > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> >
> > MG = 6.292090968*10^11,
> > 2*MG=1.258418194*10^12.
> > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> >
> > 2.720522631*10^11<=r<=8.306841627*10^11
> > +,- sign for integral
> > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> >
> > and
> >
> > -1.103327381*10^12<=rr<=0
> > +,- sign for integral
> > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> >
> > I calculated also these integrals but their formulae are too long to copy here.
> > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > Real parts = 0 in these integrals.
> > How to interpret pure imaginary phi and phiphi angles?
> > How to interpret these Imaginary angle plots?
> >
> > Best Regards,
> > Hannu Poropudas
> Your solution is either:
>
> (a) incorrect, or:
>
> (b) isometric to Schwarzschild's.
>
> Don't waste your time.
>
> --
> Jan

Your (b) alternative seems not to be true due two separate event horizons in this metrics ?

Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.

Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
but you are correct in point of view that it may not be physically acceptable solution
of these equations at our present orthodoxic physical knowledge.
This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.

There exist also few other integration constants from Euler-Largrange equations,
but I have selected randomly only one couple of them in this example calculation.

Hannu

Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<5039b821-0db6-46dc-8fcb-095d22688ed5n@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127131&group=sci.physics.relativity#127131

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:a05:6214:b03:b0:66d:3f3:23ee with SMTP id u3-20020a0562140b0300b0066d03f323eemr96148qvj.10.1697911370784;
Sat, 21 Oct 2023 11:02:50 -0700 (PDT)
X-Received: by 2002:a05:6871:3209:b0:1e9:9b32:3e7c with SMTP id
mo9-20020a056871320900b001e99b323e7cmr1832747oac.4.1697911370346; Sat, 21 Oct
2023 11:02:50 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer02.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Sat, 21 Oct 2023 11:02:49 -0700 (PDT)
In-Reply-To: <1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=97.126.102.120; posting-account=WH2DoQoAAADZe3cdQWvJ9HKImeLRniYW
NNTP-Posting-Host: 97.126.102.120
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <5039b821-0db6-46dc-8fcb-095d22688ed5n@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: ross.a.f...@gmail.com (Ross Finlayson)
Injection-Date: Sat, 21 Oct 2023 18:02:50 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 7851
 by: Ross Finlayson - Sat, 21 Oct 2023 18:02 UTC

On Thursday, October 19, 2023 at 11:54:12 PM UTC-7, Hannu Poropudas wrote:
> torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > Spherically symmetric metrics which satisfies
> > > > Einstein's vacuum field equations.
> > > >
> > > > (c=1,G=1 units)
> > > >
> > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > >
> > > > (c=1,G=1 units)
> > > >
> > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > >
> > > > (m -> m*G/c^2 , if SI-units are used.)
> > > >
> > > > I don't know that would this solution have any astrophysical applications?
> > > >
> > > > There exist a book called something like
> > > > "Exact Solutions of the Einstein Field Equations",
> > > > which have about 740 pages and
> > > > I don't know if this solution is among them?
> > > >
> > > > Three singularity points of the metrics are the following:
> > > >
> > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > >
> > > >
> > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > >
> > > > Reference:
> > > > Tolman R. C., 1934.
> > > > Effect of inhomogeneity on cosmological models.
> > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > >
> > > > Best Regrads,
> > > >
> > > > Hannu Poropudas
> > > >
> > > > Kolamäentie 9E
> > > > 90900 Kiiminki / Oulu
> > > > Finland
> > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > due three integration constants from Euler-Lagrange equations does not have
> > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > >
> > > MG = 6.292090968*10^11,
> > > 2*MG=1.258418194*10^12.
> > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > >
> > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > +,- sign for integral
> > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > >
> > > and
> > >
> > > -1.103327381*10^12<=rr<=0
> > > +,- sign for integral
> > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > >
> > > I calculated also these integrals but their formulae are too long to copy here.
> > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > Real parts = 0 in these integrals.
> > > How to interpret pure imaginary phi and phiphi angles?
> > > How to interpret these Imaginary angle plots?
> > >
> > > Best Regards,
> > > Hannu Poropudas
> > Your solution is either:
> >
> > (a) incorrect, or:
> >
> > (b) isometric to Schwarzschild's.
> >
> > Don't waste your time.
> >
> > --
> > Jan
> Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
>
> Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
>
> Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> but you are correct in point of view that it may not be physically acceptable solution
> of these equations at our present orthodoxic physical knowledge.
> This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
>
> There exist also few other integration constants from Euler-Largrange equations,
> but I have selected randomly only one couple of them in this example calculation.
>
> Hannu

It's either "more symmetries" or "less symmetries", or same.

You mention integration constants and so we call that "quantities",
when quantities aren't atomic algebraically to their symbolic notation.
(Analytically.)

The differential quantities, here is for an ideal, "the field equations
of a singularity", "the orbit equations of a singularity", as above
this "cube wall" reflects geometrically, the large and small,
inside/outside, that the horizon is local everywhere, makes
for not necessarily centralized moments, why outside it is
inverse cube and inside flat, or that ideally that's zero instead
of infinity, in or out of a singularity.

Then it's figured that the inertial _systems_, are in their potential
and actual, for example having "singularities that vanish"
vis-a-vis "singularities that as infinite ideally always grow
while growing less than their growing Scharzschild radius",
within which matter is so dense as singular, affecting inverse cube.

It's theories of stellar pulsation. Accretion, this and that,
it's like, when twenty or more years ago,
science announced "science now makes black holes on Earth",
that, there was "of course by definition that would eat the Earth",
what "definitions" result, singularity theories in ideals,
that "maintaining the inertial center" of a black hole, is arbitrary.

Here it's about inverse cube or weight to power, "gravity",
then in coordinates "the dynamics of the singularity, in
effect". Then these are linear broadly and orthogonal
directly, "cube wall" and "oncoming cube" and "incoming cube",
inverse cube and flat.

Good luck Hannu, here then it's as about "constants and quantities",
differential.

Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<4ded0361-d093-41a8-8c8b-8c5feec31559n@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127158&group=sci.physics.relativity#127158

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:a05:6214:588a:b0:66d:8696:7216 with SMTP id md10-20020a056214588a00b0066d86967216mr147092qvb.11.1698001217882;
Sun, 22 Oct 2023 12:00:17 -0700 (PDT)
X-Received: by 2002:a05:6870:6590:b0:1e9:9250:aa41 with SMTP id
fp16-20020a056870659000b001e99250aa41mr3612189oab.1.1698001217701; Sun, 22
Oct 2023 12:00:17 -0700 (PDT)
Path: i2pn2.org!i2pn.org!news.nntp4.net!weretis.net!feeder8.news.weretis.net!proxad.net!feeder1-2.proxad.net!209.85.160.216.MISMATCH!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Sun, 22 Oct 2023 12:00:17 -0700 (PDT)
In-Reply-To: <5039b821-0db6-46dc-8fcb-095d22688ed5n@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=2601:1c0:c801:9270:5179:4419:1ca2:de8e;
posting-account=Dg6LkgkAAABl5NRBT4_iFEO1VO77GchW
NNTP-Posting-Host: 2601:1c0:c801:9270:5179:4419:1ca2:de8e
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <5039b821-0db6-46dc-8fcb-095d22688ed5n@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <4ded0361-d093-41a8-8c8b-8c5feec31559n@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: mitchrae...@gmail.com (mitchr...@gmail.com)
Injection-Date: Sun, 22 Oct 2023 19:00:17 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
 by: mitchr...@gmail.com - Sun, 22 Oct 2023 19:00 UTC

On Saturday, October 21, 2023 at 11:02:52 AM UTC-7, Ross Finlayson wrote:
> On Thursday, October 19, 2023 at 11:54:12 PM UTC-7, Hannu Poropudas wrote:
> > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > Spherically symmetric metrics which satisfies
> > > > > Einstein's vacuum field equations.
> > > > >
> > > > > (c=1,G=1 units)
> > > > >
> > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > >
> > > > > (c=1,G=1 units)
> > > > >
> > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > >
> > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > >
> > > > > I don't know that would this solution have any astrophysical applications?
> > > > >
> > > > > There exist a book called something like
> > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > which have about 740 pages and
> > > > > I don't know if this solution is among them?
> > > > >
> > > > > Three singularity points of the metrics are the following:
> > > > >
> > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > >
> > > > >
> > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > >
> > > > > Reference:
> > > > > Tolman R. C., 1934.
> > > > > Effect of inhomogeneity on cosmological models.
> > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > >
> > > > > Best Regrads,
> > > > >
> > > > > Hannu Poropudas
> > > > >
> > > > > Kolamäentie 9E
> > > > > 90900 Kiiminki / Oulu
> > > > > Finland
> > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > due three integration constants from Euler-Lagrange equations does not have
> > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > >
> > > > MG = 6.292090968*10^11,
> > > > 2*MG=1.258418194*10^12.
> > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > >
> > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > +,- sign for integral
> > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > >
> > > > and
> > > >
> > > > -1.103327381*10^12<=rr<=0
> > > > +,- sign for integral
> > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > >
> > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > Real parts = 0 in these integrals.
> > > > How to interpret pure imaginary phi and phiphi angles?
> > > > How to interpret these Imaginary angle plots?
> > > >
> > > > Best Regards,
> > > > Hannu Poropudas
> > > Your solution is either:
> > >
> > > (a) incorrect, or:
> > >
> > > (b) isometric to Schwarzschild's.
> > >
> > > Don't waste your time.
> > >
> > > --
> > > Jan
> > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> >
> > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> >
> > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > but you are correct in point of view that it may not be physically acceptable solution
> > of these equations at our present orthodoxic physical knowledge.
> > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> >
> > There exist also few other integration constants from Euler-Largrange equations,
> > but I have selected randomly only one couple of them in this example calculation.
> >
> > Hannu
> It's either "more symmetries" or "less symmetries", or same.
>
> You mention integration constants and so we call that "quantities",
> when quantities aren't atomic algebraically to their symbolic notation.
> (Analytically.)
>
> The differential quantities, here is for an ideal, "the field equations
> of a singularity", "the orbit equations of a singularity", as above
> this "cube wall" reflects geometrically, the large and small,
> inside/outside, that the horizon is local everywhere, makes
> for not necessarily centralized moments, why outside it is
> inverse cube and inside flat, or that ideally that's zero instead
> of infinity, in or out of a singularity.
>
> Then it's figured that the inertial _systems_, are in their potential
> and actual, for example having "singularities that vanish"
> vis-a-vis "singularities that as infinite ideally always grow
> while growing less than their growing Scharzschild radius",
> within which matter is so dense as singular, affecting inverse cube.
>
> It's theories of stellar pulsation. Accretion, this and that,
> it's like, when twenty or more years ago,
> science announced "science now makes black holes on Earth",
> that, there was "of course by definition that would eat the Earth",
> what "definitions" result, singularity theories in ideals,
> that "maintaining the inertial center" of a black hole, is arbitrary.
>
>
> Here it's about inverse cube or weight to power, "gravity",
> then in coordinates "the dynamics of the singularity, in
> effect". Then these are linear broadly and orthogonal
> directly, "cube wall" and "oncoming cube" and "incoming cube",
> inverse cube and flat.
>
>
> Good luck Hannu, here then it's as about "constants and quantities",
> differential.

How is a vacuum round?
The closed universe is flat geometry and in the hypersphere boundary

Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127213&group=sci.physics.relativity#127213

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:ad4:4f51:0:b0:66d:86be:254f with SMTP id eu17-20020ad44f51000000b0066d86be254fmr206053qvb.7.1698137808281;
Tue, 24 Oct 2023 01:56:48 -0700 (PDT)
X-Received: by 2002:a9d:6d91:0:b0:6bc:af19:1d22 with SMTP id
x17-20020a9d6d91000000b006bcaf191d22mr3264595otp.7.1698137807904; Tue, 24 Oct
2023 01:56:47 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer02.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Tue, 24 Oct 2023 01:56:47 -0700 (PDT)
In-Reply-To: <1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=130.231.159.203; posting-account=1H9XwwoAAADT6KUHcLIWMoply9bM_d5b
NNTP-Posting-Host: 130.231.159.203
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: haporop...@gmail.com (Hannu Poropudas)
Injection-Date: Tue, 24 Oct 2023 08:56:48 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 7783
 by: Hannu Poropudas - Tue, 24 Oct 2023 08:56 UTC

perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > Spherically symmetric metrics which satisfies
> > > > Einstein's vacuum field equations.
> > > >
> > > > (c=1,G=1 units)
> > > >
> > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > >
> > > > (c=1,G=1 units)
> > > >
> > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > >
> > > > (m -> m*G/c^2 , if SI-units are used.)
> > > >
> > > > I don't know that would this solution have any astrophysical applications?
> > > >
> > > > There exist a book called something like
> > > > "Exact Solutions of the Einstein Field Equations",
> > > > which have about 740 pages and
> > > > I don't know if this solution is among them?
> > > >
> > > > Three singularity points of the metrics are the following:
> > > >
> > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > >
> > > >
> > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > >
> > > > Reference:
> > > > Tolman R. C., 1934.
> > > > Effect of inhomogeneity on cosmological models.
> > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > >
> > > > Best Regrads,
> > > >
> > > > Hannu Poropudas
> > > >
> > > > Kolamäentie 9E
> > > > 90900 Kiiminki / Oulu
> > > > Finland
> > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > due three integration constants from Euler-Lagrange equations does not have
> > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > >
> > > MG = 6.292090968*10^11,
> > > 2*MG=1.258418194*10^12.
> > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > >
> > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > +,- sign for integral
> > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > >
> > > and
> > >
> > > -1.103327381*10^12<=rr<=0
> > > +,- sign for integral
> > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > >
> > > I calculated also these integrals but their formulae are too long to copy here.
> > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > Real parts = 0 in these integrals.
> > > How to interpret pure imaginary phi and phiphi angles?
> > > How to interpret these Imaginary angle plots?
> > >
> > > Best Regards,
> > > Hannu Poropudas
> > Your solution is either:
> >
> > (a) incorrect, or:
> >
> > (b) isometric to Schwarzschild's.
> >
> > Don't waste your time.
> >
> > --
> > Jan
> Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
>
> Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
>
> Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> but you are correct in point of view that it may not be physically acceptable solution
> of these equations at our present orthodoxic physical knowledge.
> This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
>
> There exist also few other integration constants from Euler-Largrange equations,
> but I have selected randomly only one couple of them in this example calculation.
>
> Hannu

I put here those strange (NO ordinary physical interpretation) formulae of integration
constants from Euler-Largrange equations:

I mark now for convenience T = coordinate time and t = proper time.

(dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
(1-2*m/r)*(dT/dt) = K2 (constant of integration)
(1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.

I calculated for randomly selected numerical values of S2-star aphelion and perhelion
distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
to calculate two integration constants K1 and K2 of Euler-Largange equations
(NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):

K1 = +,- 0.7072727132*I,
K2 = +,- 0.5943942676 +,- 0.5943942676*I,

And I selected here randomly as an example two constants of integration
in this my two analytic solutions calculation:

K1 = - 0.7072727132*I
and
K2 = 0.5943942676 - 0.5943942676*I

This selection gave those two pure imaginary analytic solutions which I gave here earlier.
(Phi(P) is pure imaginary angle and r(P) is real distance.
Phiphi(P) is pure imaginary angle and rr(P) is real distance).

Plot ([Im(phi(P)),r(P),P=0..Pi]);
Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)

Those both plots resemble somehow pendulum orbit ?

I have NO physical interpretations of these solutions
and I think that these have NO real physical applications.

Hannu Poropudas

Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127250&group=sci.physics.relativity#127250

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:ae9:e201:0:b0:772:5d97:4246 with SMTP id c1-20020ae9e201000000b007725d974246mr279465qkc.10.1698224514473;
Wed, 25 Oct 2023 02:01:54 -0700 (PDT)
X-Received: by 2002:a05:6830:910:b0:6be:e5f5:a05e with SMTP id
v16-20020a056830091000b006bee5f5a05emr4506427ott.6.1698224514123; Wed, 25 Oct
2023 02:01:54 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer01.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Wed, 25 Oct 2023 02:01:53 -0700 (PDT)
In-Reply-To: <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=130.231.159.203; posting-account=1H9XwwoAAADT6KUHcLIWMoply9bM_d5b
NNTP-Posting-Host: 130.231.159.203
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: haporop...@gmail.com (Hannu Poropudas)
Injection-Date: Wed, 25 Oct 2023 09:01:54 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 9144
 by: Hannu Poropudas - Wed, 25 Oct 2023 09:01 UTC

tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > Spherically symmetric metrics which satisfies
> > > > > Einstein's vacuum field equations.
> > > > >
> > > > > (c=1,G=1 units)
> > > > >
> > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > >
> > > > > (c=1,G=1 units)
> > > > >
> > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > >
> > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > >
> > > > > I don't know that would this solution have any astrophysical applications?
> > > > >
> > > > > There exist a book called something like
> > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > which have about 740 pages and
> > > > > I don't know if this solution is among them?
> > > > >
> > > > > Three singularity points of the metrics are the following:
> > > > >
> > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > >
> > > > >
> > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > >
> > > > > Reference:
> > > > > Tolman R. C., 1934.
> > > > > Effect of inhomogeneity on cosmological models.
> > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > >
> > > > > Best Regrads,
> > > > >
> > > > > Hannu Poropudas
> > > > >
> > > > > Kolamäentie 9E
> > > > > 90900 Kiiminki / Oulu
> > > > > Finland
> > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > due three integration constants from Euler-Lagrange equations does not have
> > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > >
> > > > MG = 6.292090968*10^11,
> > > > 2*MG=1.258418194*10^12.
> > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > >
> > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > +,- sign for integral
> > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > >
> > > > and
> > > >
> > > > -1.103327381*10^12<=rr<=0
> > > > +,- sign for integral
> > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > >
> > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > Real parts = 0 in these integrals.
> > > > How to interpret pure imaginary phi and phiphi angles?
> > > > How to interpret these Imaginary angle plots?
> > > >
> > > > Best Regards,
> > > > Hannu Poropudas
> > > Your solution is either:
> > >
> > > (a) incorrect, or:
> > >
> > > (b) isometric to Schwarzschild's.
> > >
> > > Don't waste your time.
> > >
> > > --
> > > Jan
> > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> >
> > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> >
> > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > but you are correct in point of view that it may not be physically acceptable solution
> > of these equations at our present orthodoxic physical knowledge.
> > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> >
> > There exist also few other integration constants from Euler-Largrange equations,
> > but I have selected randomly only one couple of them in this example calculation.
> >
> > Hannu
> I put here those strange (NO ordinary physical interpretation) formulae of integration
> constants from Euler-Largrange equations:
>
> I mark now for convenience T = coordinate time and t = proper time.
>
> (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
>
> I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> to calculate two integration constants K1 and K2 of Euler-Largange equations
> (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
>
> K1 = +,- 0.7072727132*I,
> K2 = +,- 0.5943942676 +,- 0.5943942676*I,
>
> And I selected here randomly as an example two constants of integration
> in this my two analytic solutions calculation:
>
> K1 = - 0.7072727132*I
> and
> K2 = 0.5943942676 - 0.5943942676*I
>
> This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> (Phi(P) is pure imaginary angle and r(P) is real distance.
> Phiphi(P) is pure imaginary angle and rr(P) is real distance).
>
> Plot ([Im(phi(P)),r(P),P=0..Pi]);
> Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
>
> Those both plots resemble somehow pendulum orbit ?
>
> I have NO physical interpretations of these solutions
> and I think that these have NO real physical applications.
>
> Hannu Poropudas

I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?

It seems to me that this integral is too complicated to calculate analytically, but it could be so
with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
in this above case that the coordinate time T could be two dimensional complex number ?

This also seems to support what I said above.

I have NO physical interpretations of these solutions
and I think at the moment that these have NO real physical applications.

And we should study two dimensional complex mathematics of two dimensional
coordinate time (T) in this complicated integral better,
if we try to better understand this situation,
if this would be sensible at all ?

Best Regards,
Hannu Poropudas

Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127256&group=sci.physics.relativity#127256

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:a05:620a:8196:b0:775:78bb:5e8e with SMTP id ot22-20020a05620a819600b0077578bb5e8emr229738qkn.5.1698233854035;
Wed, 25 Oct 2023 04:37:34 -0700 (PDT)
X-Received: by 2002:a05:6870:d611:b0:1e1:394:52a8 with SMTP id
a17-20020a056870d61100b001e1039452a8mr6171641oaq.3.1698233853610; Wed, 25 Oct
2023 04:37:33 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer03.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Wed, 25 Oct 2023 04:37:33 -0700 (PDT)
In-Reply-To: <aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=85.194.208.161; posting-account=1H9XwwoAAADT6KUHcLIWMoply9bM_d5b
NNTP-Posting-Host: 85.194.208.161
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: haporop...@gmail.com (Hannu Poropudas)
Injection-Date: Wed, 25 Oct 2023 11:37:34 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 9773
 by: Hannu Poropudas - Wed, 25 Oct 2023 11:37 UTC

keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > Spherically symmetric metrics which satisfies
> > > > > > Einstein's vacuum field equations.
> > > > > >
> > > > > > (c=1,G=1 units)
> > > > > >
> > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > >
> > > > > > (c=1,G=1 units)
> > > > > >
> > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > >
> > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > >
> > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > >
> > > > > > There exist a book called something like
> > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > which have about 740 pages and
> > > > > > I don't know if this solution is among them?
> > > > > >
> > > > > > Three singularity points of the metrics are the following:
> > > > > >
> > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > >
> > > > > >
> > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > >
> > > > > > Reference:
> > > > > > Tolman R. C., 1934.
> > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > >
> > > > > > Best Regrads,
> > > > > >
> > > > > > Hannu Poropudas
> > > > > >
> > > > > > Kolamäentie 9E
> > > > > > 90900 Kiiminki / Oulu
> > > > > > Finland
> > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > >
> > > > > MG = 6.292090968*10^11,
> > > > > 2*MG=1.258418194*10^12.
> > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > >
> > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > +,- sign for integral
> > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > >
> > > > > and
> > > > >
> > > > > -1.103327381*10^12<=rr<=0
> > > > > +,- sign for integral
> > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > >
> > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > Real parts = 0 in these integrals.
> > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > How to interpret these Imaginary angle plots?
> > > > >
> > > > > Best Regards,
> > > > > Hannu Poropudas
> > > > Your solution is either:
> > > >
> > > > (a) incorrect, or:
> > > >
> > > > (b) isometric to Schwarzschild's.
> > > >
> > > > Don't waste your time.
> > > >
> > > > --
> > > > Jan
> > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > >
> > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > >
> > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > but you are correct in point of view that it may not be physically acceptable solution
> > > of these equations at our present orthodoxic physical knowledge.
> > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > >
> > > There exist also few other integration constants from Euler-Largrange equations,
> > > but I have selected randomly only one couple of them in this example calculation.
> > >
> > > Hannu
> > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > constants from Euler-Largrange equations:
> >
> > I mark now for convenience T = coordinate time and t = proper time.
> >
> > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> >
> > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> >
> > K1 = +,- 0.7072727132*I,
> > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> >
> > And I selected here randomly as an example two constants of integration
> > in this my two analytic solutions calculation:
> >
> > K1 = - 0.7072727132*I
> > and
> > K2 = 0.5943942676 - 0.5943942676*I
> >
> > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > (Phi(P) is pure imaginary angle and r(P) is real distance.
> > Phiphi(P) is pure imaginary angle and rr(P) is real distance).
> >
> > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> >
> > Those both plots resemble somehow pendulum orbit ?
> >
> > I have NO physical interpretations of these solutions
> > and I think that these have NO real physical applications.
> >
> > Hannu Poropudas
> I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
>
> It seems to me that this integral is too complicated to calculate analytically, but it could be so
> with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> in this above case that the coordinate time T could be two dimensional complex number ?
>
> This also seems to support what I said above.
> I have NO physical interpretations of these solutions
> and I think at the moment that these have NO real physical applications.
>
> And we should study two dimensional complex mathematics of two dimensional
> coordinate time (T) in this complicated integral better,
> if we try to better understand this situation,
> if this would be sensible at all ?
>
> Best Regards,
> Hannu Poropudas

CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
Sorry that I confused these two letters.


Click here to read the complete article
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<c3910a4e-7dd8-4645-8918-ac1de6623a32n@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127275&group=sci.physics.relativity#127275

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:a05:620a:5629:b0:774:1c2f:ac3e with SMTP id vv9-20020a05620a562900b007741c2fac3emr252845qkn.9.1698270783309;
Wed, 25 Oct 2023 14:53:03 -0700 (PDT)
X-Received: by 2002:a05:6830:39c6:b0:6bb:1c29:f0fa with SMTP id
bt6-20020a05683039c600b006bb1c29f0famr4446839otb.5.1698270782971; Wed, 25 Oct
2023 14:53:02 -0700 (PDT)
Path: i2pn2.org!i2pn.org!weretis.net!feeder8.news.weretis.net!proxad.net!feeder1-2.proxad.net!209.85.160.216.MISMATCH!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Wed, 25 Oct 2023 14:53:02 -0700 (PDT)
In-Reply-To: <aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=162.195.247.210; posting-account=Y2v6DQoAAACGpOrX04JGhSdsTevCdArN
NNTP-Posting-Host: 162.195.247.210
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <c3910a4e-7dd8-4645-8918-ac1de6623a32n@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: film...@gmail.com (JanPB)
Injection-Date: Wed, 25 Oct 2023 21:53:03 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
 by: JanPB - Wed, 25 Oct 2023 21:53 UTC

On Wednesday, October 25, 2023 at 2:01:55 AM UTC-7, Hannu Poropudas wrote:
> tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > Spherically symmetric metrics which satisfies
> > > > > > Einstein's vacuum field equations.
> > > > > >
> > > > > > (c=1,G=1 units)
> > > > > >
> > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > >
> > > > > > (c=1,G=1 units)
> > > > > >
> > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > >
> > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > >
> > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > >
> > > > > > There exist a book called something like
> > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > which have about 740 pages and
> > > > > > I don't know if this solution is among them?
> > > > > >
> > > > > > Three singularity points of the metrics are the following:
> > > > > >
> > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > >
> > > > > >
> > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > >
> > > > > > Reference:
> > > > > > Tolman R. C., 1934.
> > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > >
> > > > > > Best Regrads,
> > > > > >
> > > > > > Hannu Poropudas
> > > > > >
> > > > > > Kolamäentie 9E
> > > > > > 90900 Kiiminki / Oulu
> > > > > > Finland
> > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > >
> > > > > MG = 6.292090968*10^11,
> > > > > 2*MG=1.258418194*10^12.
> > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > >
> > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > +,- sign for integral
> > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > >
> > > > > and
> > > > >
> > > > > -1.103327381*10^12<=rr<=0
> > > > > +,- sign for integral
> > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > >
> > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > Real parts = 0 in these integrals.
> > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > How to interpret these Imaginary angle plots?
> > > > >
> > > > > Best Regards,
> > > > > Hannu Poropudas
> > > > Your solution is either:
> > > >
> > > > (a) incorrect, or:
> > > >
> > > > (b) isometric to Schwarzschild's.
> > > >
> > > > Don't waste your time.
> > > >
> > > > --
> > > > Jan
> > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > >
> > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > >
> > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > but you are correct in point of view that it may not be physically acceptable solution
> > > of these equations at our present orthodoxic physical knowledge.
> > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > >
> > > There exist also few other integration constants from Euler-Largrange equations,
> > > but I have selected randomly only one couple of them in this example calculation.
> > >
> > > Hannu
> > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > constants from Euler-Largrange equations:
> >
> > I mark now for convenience T = coordinate time and t = proper time.
> >
> > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> >
> > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> >
> > K1 = +,- 0.7072727132*I,
> > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> >
> > And I selected here randomly as an example two constants of integration
> > in this my two analytic solutions calculation:
> >
> > K1 = - 0.7072727132*I
> > and
> > K2 = 0.5943942676 - 0.5943942676*I
> >
> > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > (Phi(P) is pure imaginary angle and r(P) is real distance.
> > Phiphi(P) is pure imaginary angle and rr(P) is real distance).
> >
> > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> >
> > Those both plots resemble somehow pendulum orbit ?
> >
> > I have NO physical interpretations of these solutions
> > and I think that these have NO real physical applications.
> >
> > Hannu Poropudas
> I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
>
> It seems to me that this integral is too complicated to calculate analytically, but it could be so
> with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> in this above case that the coordinate time T could be two dimensional complex number ?
>
> This also seems to support what I said above.
> I have NO physical interpretations of these solutions
> and I think at the moment that these have NO real physical applications.
>
> And we should study two dimensional complex mathematics of two dimensional
> coordinate time (T) in this complicated integral better,
> if we try to better understand this situation,
> if this would be sensible at all ?
>
> Best Regards,
> Hannu Poropudas

Again: all vacuum spherically symmetric solutions are locally
isometric to the Schwarzschild metric.


Click here to read the complete article
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<653A0461.1B25@ix.netcom.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127288&group=sci.physics.relativity#127288

  copy link   Newsgroups: sci.physics.relativity
Path: i2pn2.org!i2pn.org!paganini.bofh.team!not-for-mail
From: starma...@ix.netcom.com (The Starmaker)
Newsgroups: sci.physics.relativity
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum field equations
Date: Wed, 25 Oct 2023 23:17:05 -0700
Organization: To protect and to server
Message-ID: <653A0461.1B25@ix.netcom.com>
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c3910a4e-7dd8-4645-8918-ac1de6623a32n@googlegroups.com>
Reply-To: starmaker@ix.netcom.com
Mime-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit
Injection-Info: paganini.bofh.team; logging-data="2103293"; posting-host="nLYg9UBeoMWa070gP9wQcw.user.paganini.bofh.team"; mail-complaints-to="usenet@bofh.team"; posting-account="9dIQLXBM7WM9KzA+yjdR4A";
Cancel-Lock: sha256:Gar8T8xBWmaWItt3aKbuWvL4kOZDTOn/4a6zRh5LHwA=
X-Notice: Filtered by postfilter v. 0.9.3
X-Mailer: Mozilla 3.04Gold (WinNT; U)
X-Antivirus: Avast (VPS 231026-0, 10/25/2023), Outbound message
X-Antivirus-Status: Clean
 by: The Starmaker - Thu, 26 Oct 2023 06:17 UTC

JanPB wrote:

>
> Stop wasting your time.

and he just wasted more of your time.

--
The Starmaker -- To question the unquestionable, ask the unaskable,
to think the unthinkable, mention the unmentionable, say the unsayable,
and challenge the unchallengeable.

Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<83c1577a-1061-46c8-baed-693131429119n@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127289&group=sci.physics.relativity#127289

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:a05:620a:13c7:b0:777:506b:39ee with SMTP id g7-20020a05620a13c700b00777506b39eemr281705qkl.6.1698307479112;
Thu, 26 Oct 2023 01:04:39 -0700 (PDT)
X-Received: by 2002:a9d:6d91:0:b0:6cd:877:ba0b with SMTP id
x17-20020a9d6d91000000b006cd0877ba0bmr5092045otp.7.1698307478716; Thu, 26 Oct
2023 01:04:38 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer02.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Thu, 26 Oct 2023 01:04:38 -0700 (PDT)
In-Reply-To: <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=130.231.159.203; posting-account=1H9XwwoAAADT6KUHcLIWMoply9bM_d5b
NNTP-Posting-Host: 130.231.159.203
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <83c1577a-1061-46c8-baed-693131429119n@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: haporop...@gmail.com (Hannu Poropudas)
Injection-Date: Thu, 26 Oct 2023 08:04:39 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 10697
 by: Hannu Poropudas - Thu, 26 Oct 2023 08:04 UTC

keskiviikko 25. lokakuuta 2023 klo 14.37.35 UTC+3 Hannu Poropudas kirjoitti:
> keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> > tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > Spherically symmetric metrics which satisfies
> > > > > > > Einstein's vacuum field equations.
> > > > > > >
> > > > > > > (c=1,G=1 units)
> > > > > > >
> > > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > > >
> > > > > > > (c=1,G=1 units)
> > > > > > >
> > > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > > >
> > > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > > >
> > > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > > >
> > > > > > > There exist a book called something like
> > > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > > which have about 740 pages and
> > > > > > > I don't know if this solution is among them?
> > > > > > >
> > > > > > > Three singularity points of the metrics are the following:
> > > > > > >
> > > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > > >
> > > > > > >
> > > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > > >
> > > > > > > Reference:
> > > > > > > Tolman R. C., 1934.
> > > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > > >
> > > > > > > Best Regrads,
> > > > > > >
> > > > > > > Hannu Poropudas
> > > > > > >
> > > > > > > Kolamäentie 9E
> > > > > > > 90900 Kiiminki / Oulu
> > > > > > > Finland
> > > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > > >
> > > > > > MG = 6.292090968*10^11,
> > > > > > 2*MG=1.258418194*10^12.
> > > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > > >
> > > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > > +,- sign for integral
> > > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > > >
> > > > > > and
> > > > > >
> > > > > > -1.103327381*10^12<=rr<=0
> > > > > > +,- sign for integral
> > > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > > >
> > > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > > Real parts = 0 in these integrals.
> > > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > > How to interpret these Imaginary angle plots?
> > > > > >
> > > > > > Best Regards,
> > > > > > Hannu Poropudas
> > > > > Your solution is either:
> > > > >
> > > > > (a) incorrect, or:
> > > > >
> > > > > (b) isometric to Schwarzschild's.
> > > > >
> > > > > Don't waste your time.
> > > > >
> > > > > --
> > > > > Jan
> > > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > > >
> > > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > > >
> > > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > > but you are correct in point of view that it may not be physically acceptable solution
> > > > of these equations at our present orthodoxic physical knowledge.
> > > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > > >
> > > > There exist also few other integration constants from Euler-Largrange equations,
> > > > but I have selected randomly only one couple of them in this example calculation.
> > > >
> > > > Hannu
> > > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > > constants from Euler-Largrange equations:
> > >
> > > I mark now for convenience T = coordinate time and t = proper time.
> > >
> > > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> > >
> > > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> > >
> > > K1 = +,- 0.7072727132*I,
> > > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> > >
> > > And I selected here randomly as an example two constants of integration
> > > in this my two analytic solutions calculation:
> > >
> > > K1 = - 0.7072727132*I
> > > and
> > > K2 = 0.5943942676 - 0.5943942676*I
> > >
> > > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > > (Phi(P) is pure imaginary angle and r(P) is real distance.
> > > Phiphi(P) is pure imaginary angle and rr(P) is real distance).
> > >
> > > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> > >
> > > Those both plots resemble somehow pendulum orbit ?
> > >
> > > I have NO physical interpretations of these solutions
> > > and I think that these have NO real physical applications.
> > >
> > > Hannu Poropudas
> > I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
> >
> > It seems to me that this integral is too complicated to calculate analytically, but it could be so
> > with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> > in this above case that the coordinate time T could be two dimensional complex number ?
> >
> > This also seems to support what I said above.
> > I have NO physical interpretations of these solutions
> > and I think at the moment that these have NO real physical applications..
> >
> > And we should study two dimensional complex mathematics of two dimensional
> > coordinate time (T) in this complicated integral better,
> > if we try to better understand this situation,
> > if this would be sensible at all ?
> >
> > Best Regards,
> > Hannu Poropudas
> CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
> Sorry that I confused these two letters.
>
> Hannu


Click here to read the complete article
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127333&group=sci.physics.relativity#127333

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:ad4:4e23:0:b0:66d:2da7:ab78 with SMTP id dm3-20020ad44e23000000b0066d2da7ab78mr31682qvb.10.1698392814301;
Fri, 27 Oct 2023 00:46:54 -0700 (PDT)
X-Received: by 2002:a05:6830:26ed:b0:6b9:620e:d6a7 with SMTP id
m45-20020a05683026ed00b006b9620ed6a7mr685834otu.1.1698392813951; Fri, 27 Oct
2023 00:46:53 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer02.iad!feed-me.highwinds-media.com!news.highwinds-media.com!border-1.nntp.ord.giganews.com!nntp.giganews.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Fri, 27 Oct 2023 00:46:53 -0700 (PDT)
In-Reply-To: <83c1577a-1061-46c8-baed-693131429119n@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=85.194.208.161; posting-account=1H9XwwoAAADT6KUHcLIWMoply9bM_d5b
NNTP-Posting-Host: 85.194.208.161
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
<83c1577a-1061-46c8-baed-693131429119n@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: haporop...@gmail.com (Hannu Poropudas)
Injection-Date: Fri, 27 Oct 2023 07:46:54 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
Lines: 275
X-Received-Bytes: 13093
 by: Hannu Poropudas - Fri, 27 Oct 2023 07:46 UTC

torstai 26. lokakuuta 2023 klo 11.04.40 UTC+3 Hannu Poropudas kirjoitti:
> keskiviikko 25. lokakuuta 2023 klo 14.37.35 UTC+3 Hannu Poropudas kirjoitti:
> > keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> > > tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > > > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > Spherically symmetric metrics which satisfies
> > > > > > > > Einstein's vacuum field equations.
> > > > > > > >
> > > > > > > > (c=1,G=1 units)
> > > > > > > >
> > > > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > > > >
> > > > > > > > (c=1,G=1 units)
> > > > > > > >
> > > > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > > > >
> > > > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > > > >
> > > > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > > > >
> > > > > > > > There exist a book called something like
> > > > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > > > which have about 740 pages and
> > > > > > > > I don't know if this solution is among them?
> > > > > > > >
> > > > > > > > Three singularity points of the metrics are the following:
> > > > > > > >
> > > > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > > > >
> > > > > > > >
> > > > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > > > >
> > > > > > > > Reference:
> > > > > > > > Tolman R. C., 1934.
> > > > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > > > >
> > > > > > > > Best Regrads,
> > > > > > > >
> > > > > > > > Hannu Poropudas
> > > > > > > >
> > > > > > > > Kolamäentie 9E
> > > > > > > > 90900 Kiiminki / Oulu
> > > > > > > > Finland
> > > > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > > > >
> > > > > > > MG = 6.292090968*10^11,
> > > > > > > 2*MG=1.258418194*10^12.
> > > > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > > > >
> > > > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > > > +,- sign for integral
> > > > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > > > >
> > > > > > > and
> > > > > > >
> > > > > > > -1.103327381*10^12<=rr<=0
> > > > > > > +,- sign for integral
> > > > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > > > >
> > > > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > > > Real parts = 0 in these integrals.
> > > > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > > > How to interpret these Imaginary angle plots?
> > > > > > >
> > > > > > > Best Regards,
> > > > > > > Hannu Poropudas
> > > > > > Your solution is either:
> > > > > >
> > > > > > (a) incorrect, or:
> > > > > >
> > > > > > (b) isometric to Schwarzschild's.
> > > > > >
> > > > > > Don't waste your time.
> > > > > >
> > > > > > --
> > > > > > Jan
> > > > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > > > >
> > > > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > > > >
> > > > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > > > but you are correct in point of view that it may not be physically acceptable solution
> > > > > of these equations at our present orthodoxic physical knowledge.
> > > > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > > > >
> > > > > There exist also few other integration constants from Euler-Largrange equations,
> > > > > but I have selected randomly only one couple of them in this example calculation.
> > > > >
> > > > > Hannu
> > > > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > > > constants from Euler-Largrange equations:
> > > >
> > > > I mark now for convenience T = coordinate time and t = proper time.
> > > >
> > > > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > > > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > > > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> > > >
> > > > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > > > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > > > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > > > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > > > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> > > >
> > > > K1 = +,- 0.7072727132*I,
> > > > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> > > >
> > > > And I selected here randomly as an example two constants of integration
> > > > in this my two analytic solutions calculation:
> > > >
> > > > K1 = - 0.7072727132*I
> > > > and
> > > > K2 = 0.5943942676 - 0.5943942676*I
> > > >
> > > > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > > > (Phi(P) is pure imaginary angle and r(P) is real distance.
> > > > Phiphi(P) is pure imaginary angle and rr(P) is real distance).
> > > >
> > > > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > > > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > > > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> > > >
> > > > Those both plots resemble somehow pendulum orbit ?
> > > >
> > > > I have NO physical interpretations of these solutions
> > > > and I think that these have NO real physical applications.
> > > >
> > > > Hannu Poropudas
> > > I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
> > >
> > > It seems to me that this integral is too complicated to calculate analytically, but it could be so
> > > with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> > > in this above case that the coordinate time T could be two dimensional complex number ?
> > >
> > > This also seems to support what I said above.
> > > I have NO physical interpretations of these solutions
> > > and I think at the moment that these have NO real physical applications.
> > >
> > > And we should study two dimensional complex mathematics of two dimensional
> > > coordinate time (T) in this complicated integral better,
> > > if we try to better understand this situation,
> > > if this would be sensible at all ?
> > >
> > > Best Regards,
> > > Hannu Poropudas
> > CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
> > Sorry that I confused these two letters.
> >
> > Hannu
> I found one interesting reference, which show that there
> are really only few astrophysically significant exact solutions to Einstein's field equations.
>
> Ishak, M. 2015.
> Exact Solutions to Einstein's Equations in Astrophysics.
> Texas Symposium on Relativistic Astrophysics, Geneva 2015.
> 33 pages.
> https://personal.utdallas.edu/~mishak/ExactSolutionsInAstrophysics_Ishak_Final.pdf
>
> Please take a look.
>
> Best Regards,
> Hannu Poropudas


Click here to read the complete article
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<e05adf8f-cdcc-46a8-a46c-f32418b89138n@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127362&group=sci.physics.relativity#127362

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:ac8:6608:0:b0:41c:c65b:24a4 with SMTP id c8-20020ac86608000000b0041cc65b24a4mr61276qtp.12.1698434879972;
Fri, 27 Oct 2023 12:27:59 -0700 (PDT)
X-Received: by 2002:a05:6870:f624:b0:1e9:8ae7:cb88 with SMTP id
ek36-20020a056870f62400b001e98ae7cb88mr1496633oab.5.1698434879741; Fri, 27
Oct 2023 12:27:59 -0700 (PDT)
Path: i2pn2.org!i2pn.org!paganini.bofh.team!3.eu.feeder.erje.net!feeder.erje.net!proxad.net!feeder1-2.proxad.net!209.85.160.216.MISMATCH!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Fri, 27 Oct 2023 12:27:59 -0700 (PDT)
In-Reply-To: <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=2601:1c0:c801:9270:81f:250a:92ca:dd62;
posting-account=Dg6LkgkAAABl5NRBT4_iFEO1VO77GchW
NNTP-Posting-Host: 2601:1c0:c801:9270:81f:250a:92ca:dd62
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
<83c1577a-1061-46c8-baed-693131429119n@googlegroups.com> <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <e05adf8f-cdcc-46a8-a46c-f32418b89138n@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: mitchrae...@gmail.com (mitchr...@gmail.com)
Injection-Date: Fri, 27 Oct 2023 19:27:59 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
 by: mitchr...@gmail.com - Fri, 27 Oct 2023 19:27 UTC

On Friday, October 27, 2023 at 12:46:55 AM UTC-7, Hannu Poropudas wrote:
> torstai 26. lokakuuta 2023 klo 11.04.40 UTC+3 Hannu Poropudas kirjoitti:
> > keskiviikko 25. lokakuuta 2023 klo 14.37.35 UTC+3 Hannu Poropudas kirjoitti:
> > > keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > > > > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > Spherically symmetric metrics which satisfies
> > > > > > > > > Einstein's vacuum field equations.
> > > > > > > > >
> > > > > > > > > (c=1,G=1 units)
> > > > > > > > >
> > > > > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > > > > >
> > > > > > > > > (c=1,G=1 units)
> > > > > > > > >
> > > > > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > > > > >
> > > > > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > > > > >
> > > > > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > > > > >
> > > > > > > > > There exist a book called something like
> > > > > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > > > > which have about 740 pages and
> > > > > > > > > I don't know if this solution is among them?
> > > > > > > > >
> > > > > > > > > Three singularity points of the metrics are the following:
> > > > > > > > >
> > > > > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > > > > >
> > > > > > > > >
> > > > > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > > > > >
> > > > > > > > > Reference:
> > > > > > > > > Tolman R. C., 1934.
> > > > > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > > > > >
> > > > > > > > > Best Regrads,
> > > > > > > > >
> > > > > > > > > Hannu Poropudas
> > > > > > > > >
> > > > > > > > > Kolamäentie 9E
> > > > > > > > > 90900 Kiiminki / Oulu
> > > > > > > > > Finland
> > > > > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > > > > >
> > > > > > > > MG = 6.292090968*10^11,
> > > > > > > > 2*MG=1.258418194*10^12.
> > > > > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > > > > >
> > > > > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > > > > +,- sign for integral
> > > > > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > > > > >
> > > > > > > > and
> > > > > > > >
> > > > > > > > -1.103327381*10^12<=rr<=0
> > > > > > > > +,- sign for integral
> > > > > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > > > > >
> > > > > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > > > > Real parts = 0 in these integrals.
> > > > > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > > > > How to interpret these Imaginary angle plots?
> > > > > > > >
> > > > > > > > Best Regards,
> > > > > > > > Hannu Poropudas
> > > > > > > Your solution is either:
> > > > > > >
> > > > > > > (a) incorrect, or:
> > > > > > >
> > > > > > > (b) isometric to Schwarzschild's.
> > > > > > >
> > > > > > > Don't waste your time.
> > > > > > >
> > > > > > > --
> > > > > > > Jan
> > > > > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > > > > >
> > > > > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > > > > >
> > > > > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > > > > but you are correct in point of view that it may not be physically acceptable solution
> > > > > > of these equations at our present orthodoxic physical knowledge..
> > > > > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > > > > >
> > > > > > There exist also few other integration constants from Euler-Largrange equations,
> > > > > > but I have selected randomly only one couple of them in this example calculation.
> > > > > >
> > > > > > Hannu
> > > > > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > > > > constants from Euler-Largrange equations:
> > > > >
> > > > > I mark now for convenience T = coordinate time and t = proper time.
> > > > >
> > > > > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > > > > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > > > > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> > > > >
> > > > > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > > > > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > > > > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > > > > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > > > > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> > > > >
> > > > > K1 = +,- 0.7072727132*I,
> > > > > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> > > > >
> > > > > And I selected here randomly as an example two constants of integration
> > > > > in this my two analytic solutions calculation:
> > > > >
> > > > > K1 = - 0.7072727132*I
> > > > > and
> > > > > K2 = 0.5943942676 - 0.5943942676*I
> > > > >
> > > > > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > > > > (Phi(P) is pure imaginary angle and r(P) is real distance.
> > > > > Phiphi(P) is pure imaginary angle and rr(P) is real distance).
> > > > >
> > > > > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > > > > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > > > > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> > > > >
> > > > > Those both plots resemble somehow pendulum orbit ?
> > > > >
> > > > > I have NO physical interpretations of these solutions
> > > > > and I think that these have NO real physical applications.
> > > > >
> > > > > Hannu Poropudas
> > > > I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
> > > >
> > > > It seems to me that this integral is too complicated to calculate analytically, but it could be so
> > > > with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> > > > in this above case that the coordinate time T could be two dimensional complex number ?
> > > >
> > > > This also seems to support what I said above.
> > > > I have NO physical interpretations of these solutions
> > > > and I think at the moment that these have NO real physical applications.
> > > >
> > > > And we should study two dimensional complex mathematics of two dimensional
> > > > coordinate time (T) in this complicated integral better,
> > > > if we try to better understand this situation,
> > > > if this would be sensible at all ?
> > > >
> > > > Best Regards,
> > > > Hannu Poropudas
> > > CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
> > > Sorry that I confused these two letters.
> > >
> > > Hannu
> > I found one interesting reference, which show that there
> > are really only few astrophysically significant exact solutions to Einstein's field equations.
> >
> > Ishak, M. 2015.
> > Exact Solutions to Einstein's Equations in Astrophysics.
> > Texas Symposium on Relativistic Astrophysics, Geneva 2015.
> > 33 pages.
> > https://personal.utdallas.edu/~mishak/ExactSolutionsInAstrophysics_Ishak_Final.pdf
> >
> > Please take a look.
> >
> > Best Regards,
> > Hannu Poropudas
> In order to me more mathematically complete I calculate also
> approximate proper time t integral (primitive function)
> and plotted both real part and imaginary part of it.
> I have NO interpretations of these.
>
> ># Approximate proper time t integral calculated HP 27.10.2023
> ># REMARK: My letter convenience t=proper time T=coordinate time
> ># Real part and Imaginary part plotted
> >#K3:=0;
> >#K1 := -0.7072727132*I;
> >#K2 := 0.5943942676-0.5943942676*I;
> >#m := MG;
> >#MG := 0.6292090968e12;
> >#2*MG := 0.1258418194e13;
> >#a2<=r<=a1, definition area
> >#a2=2.720522631*10^11, a1=8.306841627*10^11
>
> >#Real part of primitive function t approx.
> ># Series approx at r = MG up to 7 degree.
> >REIF:=r->-0.9292411964e-8*r+0.8717127610e-20*r^2+0.4446277653e-31*(r-0..6292090968e12)^3+0.2329675135e-42*(r-0.6292090968e12)^4+0.3071201158e-47*(r-0.6292090968e12)^5+0.2827253683e-58*(r-0.6292090968e12)^6+0.2065510967e-69*(r-0.6292090968e12)^7;
>
> >#Imaginary part of primitive function t approx.
> >># Series approx at r = MG up to 7 degree.
> >IMIF:=r->-0.2217185446e-7*r+0.3637453960e-19*r^2+0.1018586871e-30*(r-0..6292090968e12)^3+0.3376062792e-42*(r-0.6292090968e12)^4+0.4794788388e-47*(r-0.6292090968e12)^5+0.2475402813e-58*(r-0.6292090968e12)^6+0.1233132761e-69*(r-0.6292090968e12)^7;
>
> > #a2<=r<=a1, definition area
> > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > #MG := 0.6292090968e12;
> > #2*MG := 0.1258418194e13;
>
> >plot(REIF(r),r=2.720522631*10^11..8.306841627*10^11);
>
> > #a2<=r<=a1, definition area
> > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > #MG := 0.6292090968e12;
> > #2*MG := 0.1258418194e13;
>
> >plot(IMIF(r),r=2.720522631*10^11..8.306841627*10^11);
>
>
> Best Regards,
> Hannu Poropudas


Click here to read the complete article
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<96895655-f98c-4a48-bdf2-b9968c08887bn@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127385&group=sci.physics.relativity#127385

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:ac8:7254:0:b0:41b:8260:99f5 with SMTP id l20-20020ac87254000000b0041b826099f5mr79853qtp.7.1698482961054;
Sat, 28 Oct 2023 01:49:21 -0700 (PDT)
X-Received: by 2002:a05:6870:a2cf:b0:1e1:2f43:1dc6 with SMTP id
w15-20020a056870a2cf00b001e12f431dc6mr2176031oak.1.1698482960677; Sat, 28 Oct
2023 01:49:20 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!1.us.feeder.erje.net!feeder.erje.net!border-1.nntp.ord.giganews.com!nntp.giganews.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Sat, 28 Oct 2023 01:49:20 -0700 (PDT)
In-Reply-To: <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=130.231.159.203; posting-account=1H9XwwoAAADT6KUHcLIWMoply9bM_d5b
NNTP-Posting-Host: 130.231.159.203
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
<83c1577a-1061-46c8-baed-693131429119n@googlegroups.com> <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <96895655-f98c-4a48-bdf2-b9968c08887bn@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: haporop...@gmail.com (Hannu Poropudas)
Injection-Date: Sat, 28 Oct 2023 08:49:21 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
Lines: 293
 by: Hannu Poropudas - Sat, 28 Oct 2023 08:49 UTC

perjantai 27. lokakuuta 2023 klo 10.46.55 UTC+3 Hannu Poropudas kirjoitti:
> torstai 26. lokakuuta 2023 klo 11.04.40 UTC+3 Hannu Poropudas kirjoitti:
> > keskiviikko 25. lokakuuta 2023 klo 14.37.35 UTC+3 Hannu Poropudas kirjoitti:
> > > keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > > > > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > Spherically symmetric metrics which satisfies
> > > > > > > > > Einstein's vacuum field equations.
> > > > > > > > >
> > > > > > > > > (c=1,G=1 units)
> > > > > > > > >
> > > > > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > > > > >
> > > > > > > > > (c=1,G=1 units)
> > > > > > > > >
> > > > > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > > > > >
> > > > > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > > > > >
> > > > > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > > > > >
> > > > > > > > > There exist a book called something like
> > > > > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > > > > which have about 740 pages and
> > > > > > > > > I don't know if this solution is among them?
> > > > > > > > >
> > > > > > > > > Three singularity points of the metrics are the following:
> > > > > > > > >
> > > > > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > > > > >
> > > > > > > > >
> > > > > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > > > > >
> > > > > > > > > Reference:
> > > > > > > > > Tolman R. C., 1934.
> > > > > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > > > > >
> > > > > > > > > Best Regrads,
> > > > > > > > >
> > > > > > > > > Hannu Poropudas
> > > > > > > > >
> > > > > > > > > Kolamäentie 9E
> > > > > > > > > 90900 Kiiminki / Oulu
> > > > > > > > > Finland
> > > > > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > > > > >
> > > > > > > > MG = 6.292090968*10^11,
> > > > > > > > 2*MG=1.258418194*10^12.
> > > > > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > > > > >
> > > > > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > > > > +,- sign for integral
> > > > > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > > > > >
> > > > > > > > and
> > > > > > > >
> > > > > > > > -1.103327381*10^12<=rr<=0
> > > > > > > > +,- sign for integral
> > > > > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > > > > >
> > > > > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > > > > Real parts = 0 in these integrals.
> > > > > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > > > > How to interpret these Imaginary angle plots?
> > > > > > > >
> > > > > > > > Best Regards,
> > > > > > > > Hannu Poropudas
> > > > > > > Your solution is either:
> > > > > > >
> > > > > > > (a) incorrect, or:
> > > > > > >
> > > > > > > (b) isometric to Schwarzschild's.
> > > > > > >
> > > > > > > Don't waste your time.
> > > > > > >
> > > > > > > --
> > > > > > > Jan
> > > > > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > > > > >
> > > > > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > > > > >
> > > > > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > > > > but you are correct in point of view that it may not be physically acceptable solution
> > > > > > of these equations at our present orthodoxic physical knowledge..
> > > > > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > > > > >
> > > > > > There exist also few other integration constants from Euler-Largrange equations,
> > > > > > but I have selected randomly only one couple of them in this example calculation.
> > > > > >
> > > > > > Hannu
> > > > > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > > > > constants from Euler-Largrange equations:
> > > > >
> > > > > I mark now for convenience T = coordinate time and t = proper time.
> > > > >
> > > > > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > > > > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > > > > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> > > > >
> > > > > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > > > > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > > > > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > > > > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > > > > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> > > > >
> > > > > K1 = +,- 0.7072727132*I,
> > > > > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> > > > >
> > > > > And I selected here randomly as an example two constants of integration
> > > > > in this my two analytic solutions calculation:
> > > > >
> > > > > K1 = - 0.7072727132*I
> > > > > and
> > > > > K2 = 0.5943942676 - 0.5943942676*I
> > > > >
> > > > > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > > > > (Phi(P) is pure imaginary angle and r(P) is real distance.
> > > > > Phiphi(P) is pure imaginary angle and rr(P) is real distance).
> > > > >
> > > > > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > > > > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > > > > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> > > > >
> > > > > Those both plots resemble somehow pendulum orbit ?
> > > > >
> > > > > I have NO physical interpretations of these solutions
> > > > > and I think that these have NO real physical applications.
> > > > >
> > > > > Hannu Poropudas
> > > > I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
> > > >
> > > > It seems to me that this integral is too complicated to calculate analytically, but it could be so
> > > > with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> > > > in this above case that the coordinate time T could be two dimensional complex number ?
> > > >
> > > > This also seems to support what I said above.
> > > > I have NO physical interpretations of these solutions
> > > > and I think at the moment that these have NO real physical applications.
> > > >
> > > > And we should study two dimensional complex mathematics of two dimensional
> > > > coordinate time (T) in this complicated integral better,
> > > > if we try to better understand this situation,
> > > > if this would be sensible at all ?
> > > >
> > > > Best Regards,
> > > > Hannu Poropudas
> > > CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
> > > Sorry that I confused these two letters.
> > >
> > > Hannu
> > I found one interesting reference, which show that there
> > are really only few astrophysically significant exact solutions to Einstein's field equations.
> >
> > Ishak, M. 2015.
> > Exact Solutions to Einstein's Equations in Astrophysics.
> > Texas Symposium on Relativistic Astrophysics, Geneva 2015.
> > 33 pages.
> > https://personal.utdallas.edu/~mishak/ExactSolutionsInAstrophysics_Ishak_Final.pdf
> >
> > Please take a look.
> >
> > Best Regards,
> > Hannu Poropudas
> In order to me more mathematically complete I calculate also
> approximate proper time t integral (primitive function)
> and plotted both real part and imaginary part of it.
> I have NO interpretations of these.
>
> ># Approximate proper time t integral calculated HP 27.10.2023
> ># REMARK: My letter convenience t=proper time T=coordinate time
> ># Real part and Imaginary part plotted
> >#K3:=0;
> >#K1 := -0.7072727132*I;
> >#K2 := 0.5943942676-0.5943942676*I;
> >#m := MG;
> >#MG := 0.6292090968e12;
> >#2*MG := 0.1258418194e13;
> >#a2<=r<=a1, definition area
> >#a2=2.720522631*10^11, a1=8.306841627*10^11
>
> >#Real part of primitive function t approx.
> ># Series approx at r = MG up to 7 degree.
> >REIF:=r->-0.9292411964e-8*r+0.8717127610e-20*r^2+0.4446277653e-31*(r-0..6292090968e12)^3+0.2329675135e-42*(r-0.6292090968e12)^4+0.3071201158e-47*(r-0.6292090968e12)^5+0.2827253683e-58*(r-0.6292090968e12)^6+0.2065510967e-69*(r-0.6292090968e12)^7;
>
> >#Imaginary part of primitive function t approx.
> >># Series approx at r = MG up to 7 degree.
> >IMIF:=r->-0.2217185446e-7*r+0.3637453960e-19*r^2+0.1018586871e-30*(r-0..6292090968e12)^3+0.3376062792e-42*(r-0.6292090968e12)^4+0.4794788388e-47*(r-0.6292090968e12)^5+0.2475402813e-58*(r-0.6292090968e12)^6+0.1233132761e-69*(r-0.6292090968e12)^7;
>
> > #a2<=r<=a1, definition area
> > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > #MG := 0.6292090968e12;
> > #2*MG := 0.1258418194e13;
>
> >plot(REIF(r),r=2.720522631*10^11..8.306841627*10^11);
>
> > #a2<=r<=a1, definition area
> > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > #MG := 0.6292090968e12;
> > #2*MG := 0.1258418194e13;
>
> >plot(IMIF(r),r=2.720522631*10^11..8.306841627*10^11);
>
>
> Best Regards,
> Hannu Poropudas


Click here to read the complete article
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<bac517d0-43e5-441b-9a02-f06a5cc0600bn@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127400&group=sci.physics.relativity#127400

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:a05:622a:5d9a:b0:41c:bcfb:27df with SMTP id fu26-20020a05622a5d9a00b0041cbcfb27dfmr106688qtb.4.1698519195025;
Sat, 28 Oct 2023 11:53:15 -0700 (PDT)
X-Received: by 2002:a54:458d:0:b0:3a7:45f6:4b3f with SMTP id
z13-20020a54458d000000b003a745f64b3fmr1783172oib.3.1698519194684; Sat, 28 Oct
2023 11:53:14 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer03.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Sat, 28 Oct 2023 11:53:14 -0700 (PDT)
In-Reply-To: <96895655-f98c-4a48-bdf2-b9968c08887bn@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=97.126.102.120; posting-account=WH2DoQoAAADZe3cdQWvJ9HKImeLRniYW
NNTP-Posting-Host: 97.126.102.120
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
<83c1577a-1061-46c8-baed-693131429119n@googlegroups.com> <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
<96895655-f98c-4a48-bdf2-b9968c08887bn@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <bac517d0-43e5-441b-9a02-f06a5cc0600bn@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: ross.a.f...@gmail.com (Ross Finlayson)
Injection-Date: Sat, 28 Oct 2023 18:53:15 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 16210
 by: Ross Finlayson - Sat, 28 Oct 2023 18:53 UTC

On Saturday, October 28, 2023 at 1:49:22 AM UTC-7, Hannu Poropudas wrote:
> perjantai 27. lokakuuta 2023 klo 10.46.55 UTC+3 Hannu Poropudas kirjoitti:
> > torstai 26. lokakuuta 2023 klo 11.04.40 UTC+3 Hannu Poropudas kirjoitti:
> > > keskiviikko 25. lokakuuta 2023 klo 14.37.35 UTC+3 Hannu Poropudas kirjoitti:
> > > > keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > > tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > > > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > Spherically symmetric metrics which satisfies
> > > > > > > > > > Einstein's vacuum field equations.
> > > > > > > > > >
> > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > >
> > > > > > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > > > > > >
> > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > >
> > > > > > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > > > > > >
> > > > > > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > > > > > >
> > > > > > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > > > > > >
> > > > > > > > > > There exist a book called something like
> > > > > > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > > > > > which have about 740 pages and
> > > > > > > > > > I don't know if this solution is among them?
> > > > > > > > > >
> > > > > > > > > > Three singularity points of the metrics are the following:
> > > > > > > > > >
> > > > > > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > > > > > >
> > > > > > > > > >
> > > > > > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > > > > > >
> > > > > > > > > > Reference:
> > > > > > > > > > Tolman R. C., 1934.
> > > > > > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > > > > > >
> > > > > > > > > > Best Regrads,
> > > > > > > > > >
> > > > > > > > > > Hannu Poropudas
> > > > > > > > > >
> > > > > > > > > > Kolamäentie 9E
> > > > > > > > > > 90900 Kiiminki / Oulu
> > > > > > > > > > Finland
> > > > > > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > > > > > some time ago in this sci.physics.relativity Google Group.. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > > > > > >
> > > > > > > > > MG = 6.292090968*10^11,
> > > > > > > > > 2*MG=1.258418194*10^12.
> > > > > > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > > > > > >
> > > > > > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > > > > > +,- sign for integral
> > > > > > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > > > > > >
> > > > > > > > > and
> > > > > > > > >
> > > > > > > > > -1.103327381*10^12<=rr<=0
> > > > > > > > > +,- sign for integral
> > > > > > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > > > > > >
> > > > > > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > > > > > Real parts = 0 in these integrals.
> > > > > > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > > > > > How to interpret these Imaginary angle plots?
> > > > > > > > >
> > > > > > > > > Best Regards,
> > > > > > > > > Hannu Poropudas
> > > > > > > > Your solution is either:
> > > > > > > >
> > > > > > > > (a) incorrect, or:
> > > > > > > >
> > > > > > > > (b) isometric to Schwarzschild's.
> > > > > > > >
> > > > > > > > Don't waste your time.
> > > > > > > >
> > > > > > > > --
> > > > > > > > Jan
> > > > > > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > > > > > >
> > > > > > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > > > > > >
> > > > > > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > > > > > but you are correct in point of view that it may not be physically acceptable solution
> > > > > > > of these equations at our present orthodoxic physical knowledge.
> > > > > > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > > > > > >
> > > > > > > There exist also few other integration constants from Euler-Largrange equations,
> > > > > > > but I have selected randomly only one couple of them in this example calculation.
> > > > > > >
> > > > > > > Hannu
> > > > > > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > > > > > constants from Euler-Largrange equations:
> > > > > >
> > > > > > I mark now for convenience T = coordinate time and t = proper time.
> > > > > >
> > > > > > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > > > > > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > > > > > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> > > > > >
> > > > > > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > > > > > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > > > > > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > > > > > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > > > > > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> > > > > >
> > > > > > K1 = +,- 0.7072727132*I,
> > > > > > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> > > > > >
> > > > > > And I selected here randomly as an example two constants of integration
> > > > > > in this my two analytic solutions calculation:
> > > > > >
> > > > > > K1 = - 0.7072727132*I
> > > > > > and
> > > > > > K2 = 0.5943942676 - 0.5943942676*I
> > > > > >
> > > > > > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > > > > > (Phi(P) is pure imaginary angle and r(P) is real distance.
> > > > > > Phiphi(P) is pure imaginary angle and rr(P) is real distance).
> > > > > >
> > > > > > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > > > > > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > > > > > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> > > > > >
> > > > > > Those both plots resemble somehow pendulum orbit ?
> > > > > >
> > > > > > I have NO physical interpretations of these solutions
> > > > > > and I think that these have NO real physical applications.
> > > > > >
> > > > > > Hannu Poropudas
> > > > > I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
> > > > >
> > > > > It seems to me that this integral is too complicated to calculate analytically, but it could be so
> > > > > with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> > > > > in this above case that the coordinate time T could be two dimensional complex number ?
> > > > >
> > > > > This also seems to support what I said above.
> > > > > I have NO physical interpretations of these solutions
> > > > > and I think at the moment that these have NO real physical applications.
> > > > >
> > > > > And we should study two dimensional complex mathematics of two dimensional
> > > > > coordinate time (T) in this complicated integral better,
> > > > > if we try to better understand this situation,
> > > > > if this would be sensible at all ?
> > > > >
> > > > > Best Regards,
> > > > > Hannu Poropudas
> > > > CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
> > > > Sorry that I confused these two letters.
> > > >
> > > > Hannu
> > > I found one interesting reference, which show that there
> > > are really only few astrophysically significant exact solutions to Einstein's field equations.
> > >
> > > Ishak, M. 2015.
> > > Exact Solutions to Einstein's Equations in Astrophysics.
> > > Texas Symposium on Relativistic Astrophysics, Geneva 2015.
> > > 33 pages.
> > > https://personal.utdallas.edu/~mishak/ExactSolutionsInAstrophysics_Ishak_Final.pdf
> > >
> > > Please take a look.
> > >
> > > Best Regards,
> > > Hannu Poropudas
> > In order to me more mathematically complete I calculate also
> > approximate proper time t integral (primitive function)
> > and plotted both real part and imaginary part of it.
> > I have NO interpretations of these.
> >
> > ># Approximate proper time t integral calculated HP 27.10.2023
> > ># REMARK: My letter convenience t=proper time T=coordinate time
> > ># Real part and Imaginary part plotted
> > >#K3:=0;
> > >#K1 := -0.7072727132*I;
> > >#K2 := 0.5943942676-0.5943942676*I;
> > >#m := MG;
> > >#MG := 0.6292090968e12;
> > >#2*MG := 0.1258418194e13;
> > >#a2<=r<=a1, definition area
> > >#a2=2.720522631*10^11, a1=8.306841627*10^11
> >
> > >#Real part of primitive function t approx.
> > ># Series approx at r = MG up to 7 degree.
> > >REIF:=r->-0.9292411964e-8*r+0.8717127610e-20*r^2+0.4446277653e-31*(r-0.6292090968e12)^3+0.2329675135e-42*(r-0.6292090968e12)^4+0.3071201158e-47*(r-0.6292090968e12)^5+0.2827253683e-58*(r-0.6292090968e12)^6+0.2065510967e-69*(r-0.6292090968e12)^7;
> >
> > >#Imaginary part of primitive function t approx.
> > >># Series approx at r = MG up to 7 degree.
> > >IMIF:=r->-0.2217185446e-7*r+0.3637453960e-19*r^2+0.1018586871e-30*(r-0.6292090968e12)^3+0.3376062792e-42*(r-0.6292090968e12)^4+0.4794788388e-47*(r-0.6292090968e12)^5+0.2475402813e-58*(r-0.6292090968e12)^6+0.1233132761e-69*(r-0.6292090968e12)^7;
> >
> > > #a2<=r<=a1, definition area
> > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > #MG := 0.6292090968e12;
> > > #2*MG := 0.1258418194e13;
> >
> > >plot(REIF(r),r=2.720522631*10^11..8.306841627*10^11);
> >
> > > #a2<=r<=a1, definition area
> > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > #MG := 0.6292090968e12;
> > > #2*MG := 0.1258418194e13;
> >
> > >plot(IMIF(r),r=2.720522631*10^11..8.306841627*10^11);
> >
> >
> > Best Regards,
> > Hannu Poropudas
> Error estimations of these two series approximations (function - (series approx function), not integrated here):
>
> For REIF(r) : Error is approximately = 0 when 5.2*10^11 <r<7.2*10^11,
> Max negative error about -2.15 near 2.72*10^11,
> Max negative error about -0.2 near 8.307*10^11.
>
> For IMIF(r): Error is approximately = 0 when 5.4*10^1<r<7.0*10^11,
> Max negative error about -1.09 near 2.72*10^11,
> Max negative error about -0.1 near 8.307*10^11.
>
> These REIF(r) and IMIF(r) seems to me to be TWO BRANCHES of proper time t ?
>
> Best Regards,
> Hannu Poropudas


Click here to read the complete article
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<e1bca745-5755-4617-9901-82b488f20170n@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127402&group=sci.physics.relativity#127402

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:ad4:5192:0:b0:66f:b84d:bea4 with SMTP id b18-20020ad45192000000b0066fb84dbea4mr97431qvp.7.1698523376895;
Sat, 28 Oct 2023 13:02:56 -0700 (PDT)
X-Received: by 2002:a05:6830:309b:b0:6bf:ae4:5128 with SMTP id
g27-20020a056830309b00b006bf0ae45128mr2131624ots.3.1698523376670; Sat, 28 Oct
2023 13:02:56 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer01.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Sat, 28 Oct 2023 13:02:56 -0700 (PDT)
In-Reply-To: <96895655-f98c-4a48-bdf2-b9968c08887bn@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=2601:602:9b00:7c40:9005:8ce2:b54:4ea8;
posting-account=9sfziQoAAAD_UD5NP4mC4DjcYPHqoIUc
NNTP-Posting-Host: 2601:602:9b00:7c40:9005:8ce2:b54:4ea8
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
<83c1577a-1061-46c8-baed-693131429119n@googlegroups.com> <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
<96895655-f98c-4a48-bdf2-b9968c08887bn@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <e1bca745-5755-4617-9901-82b488f20170n@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: patdo...@comcast.net (patdolan)
Injection-Date: Sat, 28 Oct 2023 20:02:56 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 15539
 by: patdolan - Sat, 28 Oct 2023 20:02 UTC

On Saturday, October 28, 2023 at 1:49:22 AM UTC-7, Hannu Poropudas wrote:
> perjantai 27. lokakuuta 2023 klo 10.46.55 UTC+3 Hannu Poropudas kirjoitti:
> > torstai 26. lokakuuta 2023 klo 11.04.40 UTC+3 Hannu Poropudas kirjoitti:
> > > keskiviikko 25. lokakuuta 2023 klo 14.37.35 UTC+3 Hannu Poropudas kirjoitti:
> > > > keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > > tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > > > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > Spherically symmetric metrics which satisfies
> > > > > > > > > > Einstein's vacuum field equations.
> > > > > > > > > >
> > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > >
> > > > > > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > > > > > >
> > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > >
> > > > > > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > > > > > >
> > > > > > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > > > > > >
> > > > > > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > > > > > >
> > > > > > > > > > There exist a book called something like
> > > > > > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > > > > > which have about 740 pages and
> > > > > > > > > > I don't know if this solution is among them?
> > > > > > > > > >
> > > > > > > > > > Three singularity points of the metrics are the following:
> > > > > > > > > >
> > > > > > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > > > > > >
> > > > > > > > > >
> > > > > > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > > > > > >
> > > > > > > > > > Reference:
> > > > > > > > > > Tolman R. C., 1934.
> > > > > > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > > > > > >
> > > > > > > > > > Best Regrads,
> > > > > > > > > >
> > > > > > > > > > Hannu Poropudas
> > > > > > > > > >
> > > > > > > > > > Kolamäentie 9E
> > > > > > > > > > 90900 Kiiminki / Oulu
> > > > > > > > > > Finland
> > > > > > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > > > > > some time ago in this sci.physics.relativity Google Group.. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > > > > > >
> > > > > > > > > MG = 6.292090968*10^11,
> > > > > > > > > 2*MG=1.258418194*10^12.
> > > > > > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > > > > > >
> > > > > > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > > > > > +,- sign for integral
> > > > > > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > > > > > >
> > > > > > > > > and
> > > > > > > > >
> > > > > > > > > -1.103327381*10^12<=rr<=0
> > > > > > > > > +,- sign for integral
> > > > > > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > > > > > >
> > > > > > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > > > > > Real parts = 0 in these integrals.
> > > > > > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > > > > > How to interpret these Imaginary angle plots?
> > > > > > > > >
> > > > > > > > > Best Regards,
> > > > > > > > > Hannu Poropudas
> > > > > > > > Your solution is either:
> > > > > > > >
> > > > > > > > (a) incorrect, or:
> > > > > > > >
> > > > > > > > (b) isometric to Schwarzschild's.
> > > > > > > >
> > > > > > > > Don't waste your time.
> > > > > > > >
> > > > > > > > --
> > > > > > > > Jan
> > > > > > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > > > > > >
> > > > > > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > > > > > >
> > > > > > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > > > > > but you are correct in point of view that it may not be physically acceptable solution
> > > > > > > of these equations at our present orthodoxic physical knowledge.
> > > > > > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > > > > > >
> > > > > > > There exist also few other integration constants from Euler-Largrange equations,
> > > > > > > but I have selected randomly only one couple of them in this example calculation.
> > > > > > >
> > > > > > > Hannu
> > > > > > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > > > > > constants from Euler-Largrange equations:
> > > > > >
> > > > > > I mark now for convenience T = coordinate time and t = proper time.
> > > > > >
> > > > > > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > > > > > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > > > > > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> > > > > >
> > > > > > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > > > > > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > > > > > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > > > > > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > > > > > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> > > > > >
> > > > > > K1 = +,- 0.7072727132*I,
> > > > > > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> > > > > >
> > > > > > And I selected here randomly as an example two constants of integration
> > > > > > in this my two analytic solutions calculation:
> > > > > >
> > > > > > K1 = - 0.7072727132*I
> > > > > > and
> > > > > > K2 = 0.5943942676 - 0.5943942676*I
> > > > > >
> > > > > > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > > > > > (Phi(P) is pure imaginary angle and r(P) is real distance.
> > > > > > Phiphi(P) is pure imaginary angle and rr(P) is real distance).
> > > > > >
> > > > > > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > > > > > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > > > > > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> > > > > >
> > > > > > Those both plots resemble somehow pendulum orbit ?
> > > > > >
> > > > > > I have NO physical interpretations of these solutions
> > > > > > and I think that these have NO real physical applications.
> > > > > >
> > > > > > Hannu Poropudas
> > > > > I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
> > > > >
> > > > > It seems to me that this integral is too complicated to calculate analytically, but it could be so
> > > > > with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> > > > > in this above case that the coordinate time T could be two dimensional complex number ?
> > > > >
> > > > > This also seems to support what I said above.
> > > > > I have NO physical interpretations of these solutions
> > > > > and I think at the moment that these have NO real physical applications.
> > > > >
> > > > > And we should study two dimensional complex mathematics of two dimensional
> > > > > coordinate time (T) in this complicated integral better,
> > > > > if we try to better understand this situation,
> > > > > if this would be sensible at all ?
> > > > >
> > > > > Best Regards,
> > > > > Hannu Poropudas
> > > > CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
> > > > Sorry that I confused these two letters.
> > > >
> > > > Hannu
> > > I found one interesting reference, which show that there
> > > are really only few astrophysically significant exact solutions to Einstein's field equations.
> > >
> > > Ishak, M. 2015.
> > > Exact Solutions to Einstein's Equations in Astrophysics.
> > > Texas Symposium on Relativistic Astrophysics, Geneva 2015.
> > > 33 pages.
> > > https://personal.utdallas.edu/~mishak/ExactSolutionsInAstrophysics_Ishak_Final.pdf
> > >
> > > Please take a look.
> > >
> > > Best Regards,
> > > Hannu Poropudas
> > In order to me more mathematically complete I calculate also
> > approximate proper time t integral (primitive function)
> > and plotted both real part and imaginary part of it.
> > I have NO interpretations of these.
> >
> > ># Approximate proper time t integral calculated HP 27.10.2023
> > ># REMARK: My letter convenience t=proper time T=coordinate time
> > ># Real part and Imaginary part plotted
> > >#K3:=0;
> > >#K1 := -0.7072727132*I;
> > >#K2 := 0.5943942676-0.5943942676*I;
> > >#m := MG;
> > >#MG := 0.6292090968e12;
> > >#2*MG := 0.1258418194e13;
> > >#a2<=r<=a1, definition area
> > >#a2=2.720522631*10^11, a1=8.306841627*10^11
> >
> > >#Real part of primitive function t approx.
> > ># Series approx at r = MG up to 7 degree.
> > >REIF:=r->-0.9292411964e-8*r+0.8717127610e-20*r^2+0.4446277653e-31*(r-0.6292090968e12)^3+0.2329675135e-42*(r-0.6292090968e12)^4+0.3071201158e-47*(r-0.6292090968e12)^5+0.2827253683e-58*(r-0.6292090968e12)^6+0.2065510967e-69*(r-0.6292090968e12)^7;
> >
> > >#Imaginary part of primitive function t approx.
> > >># Series approx at r = MG up to 7 degree.
> > >IMIF:=r->-0.2217185446e-7*r+0.3637453960e-19*r^2+0.1018586871e-30*(r-0.6292090968e12)^3+0.3376062792e-42*(r-0.6292090968e12)^4+0.4794788388e-47*(r-0.6292090968e12)^5+0.2475402813e-58*(r-0.6292090968e12)^6+0.1233132761e-69*(r-0.6292090968e12)^7;
> >
> > > #a2<=r<=a1, definition area
> > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > #MG := 0.6292090968e12;
> > > #2*MG := 0.1258418194e13;
> >
> > >plot(REIF(r),r=2.720522631*10^11..8.306841627*10^11);
> >
> > > #a2<=r<=a1, definition area
> > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > #MG := 0.6292090968e12;
> > > #2*MG := 0.1258418194e13;
> >
> > >plot(IMIF(r),r=2.720522631*10^11..8.306841627*10^11);
> >
> >
> > Best Regards,
> > Hannu Poropudas
> Error estimations of these two series approximations (function - (series approx function), not integrated here):
>
> For REIF(r) : Error is approximately = 0 when 5.2*10^11 <r<7.2*10^11,
> Max negative error about -2.15 near 2.72*10^11,
> Max negative error about -0.2 near 8.307*10^11.
>
> For IMIF(r): Error is approximately = 0 when 5.4*10^1<r<7.0*10^11,
> Max negative error about -1.09 near 2.72*10^11,
> Max negative error about -0.1 near 8.307*10^11.
>
> These REIF(r) and IMIF(r) seems to me to be TWO BRANCHES of proper time t ?
>
> Best Regards,
> Hannu Poropudas


Click here to read the complete article
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<5410146f-0271-44c3-98be-d6ee33e08cc2n@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127403&group=sci.physics.relativity#127403

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:ac8:688a:0:b0:417:b906:1c03 with SMTP id m10-20020ac8688a000000b00417b9061c03mr113958qtq.7.1698524366971;
Sat, 28 Oct 2023 13:19:26 -0700 (PDT)
X-Received: by 2002:a05:6870:7251:b0:1ef:b569:899b with SMTP id
y17-20020a056870725100b001efb569899bmr572935oaf.3.1698524366574; Sat, 28 Oct
2023 13:19:26 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer03.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Sat, 28 Oct 2023 13:19:26 -0700 (PDT)
In-Reply-To: <e1bca745-5755-4617-9901-82b488f20170n@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=97.126.102.120; posting-account=WH2DoQoAAADZe3cdQWvJ9HKImeLRniYW
NNTP-Posting-Host: 97.126.102.120
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
<83c1577a-1061-46c8-baed-693131429119n@googlegroups.com> <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
<96895655-f98c-4a48-bdf2-b9968c08887bn@googlegroups.com> <e1bca745-5755-4617-9901-82b488f20170n@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <5410146f-0271-44c3-98be-d6ee33e08cc2n@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: ross.a.f...@gmail.com (Ross Finlayson)
Injection-Date: Sat, 28 Oct 2023 20:19:26 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 16617
 by: Ross Finlayson - Sat, 28 Oct 2023 20:19 UTC

On Saturday, October 28, 2023 at 1:02:58 PM UTC-7, patdolan wrote:
> On Saturday, October 28, 2023 at 1:49:22 AM UTC-7, Hannu Poropudas wrote:
> > perjantai 27. lokakuuta 2023 klo 10.46.55 UTC+3 Hannu Poropudas kirjoitti:
> > > torstai 26. lokakuuta 2023 klo 11.04.40 UTC+3 Hannu Poropudas kirjoitti:
> > > > keskiviikko 25. lokakuuta 2023 klo 14.37.35 UTC+3 Hannu Poropudas kirjoitti:
> > > > > keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > > > > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > > > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > > Spherically symmetric metrics which satisfies
> > > > > > > > > > > Einstein's vacuum field equations.
> > > > > > > > > > >
> > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > >
> > > > > > > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > > > > > > >
> > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > >
> > > > > > > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > > > > > > >
> > > > > > > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > > > > > > >
> > > > > > > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > > > > > > >
> > > > > > > > > > > There exist a book called something like
> > > > > > > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > > > > > > which have about 740 pages and
> > > > > > > > > > > I don't know if this solution is among them?
> > > > > > > > > > >
> > > > > > > > > > > Three singularity points of the metrics are the following:
> > > > > > > > > > >
> > > > > > > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > > > > > > >
> > > > > > > > > > >
> > > > > > > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > > > > > > >
> > > > > > > > > > > Reference:
> > > > > > > > > > > Tolman R. C., 1934.
> > > > > > > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > > > > > > >
> > > > > > > > > > > Best Regrads,
> > > > > > > > > > >
> > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > >
> > > > > > > > > > > Kolamäentie 9E
> > > > > > > > > > > 90900 Kiiminki / Oulu
> > > > > > > > > > > Finland
> > > > > > > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > > > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > > > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > > > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > > > > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > > > > > > >
> > > > > > > > > > MG = 6.292090968*10^11,
> > > > > > > > > > 2*MG=1.258418194*10^12.
> > > > > > > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > > > > > > >
> > > > > > > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > > > > > > +,- sign for integral
> > > > > > > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > > > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > > > > > > >
> > > > > > > > > > and
> > > > > > > > > >
> > > > > > > > > > -1.103327381*10^12<=rr<=0
> > > > > > > > > > +,- sign for integral
> > > > > > > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > > > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1..103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > > > > > > >
> > > > > > > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > > > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > > > > > > Real parts = 0 in these integrals.
> > > > > > > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > > > > > > How to interpret these Imaginary angle plots?
> > > > > > > > > >
> > > > > > > > > > Best Regards,
> > > > > > > > > > Hannu Poropudas
> > > > > > > > > Your solution is either:
> > > > > > > > >
> > > > > > > > > (a) incorrect, or:
> > > > > > > > >
> > > > > > > > > (b) isometric to Schwarzschild's.
> > > > > > > > >
> > > > > > > > > Don't waste your time.
> > > > > > > > >
> > > > > > > > > --
> > > > > > > > > Jan
> > > > > > > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > > > > > > >
> > > > > > > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > > > > > > >
> > > > > > > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > > > > > > but you are correct in point of view that it may not be physically acceptable solution
> > > > > > > > of these equations at our present orthodoxic physical knowledge.
> > > > > > > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > > > > > > >
> > > > > > > > There exist also few other integration constants from Euler-Largrange equations,
> > > > > > > > but I have selected randomly only one couple of them in this example calculation.
> > > > > > > >
> > > > > > > > Hannu
> > > > > > > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > > > > > > constants from Euler-Largrange equations:
> > > > > > >
> > > > > > > I mark now for convenience T = coordinate time and t = proper time.
> > > > > > >
> > > > > > > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > > > > > > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > > > > > > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> > > > > > >
> > > > > > > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > > > > > > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > > > > > > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > > > > > > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > > > > > > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> > > > > > >
> > > > > > > K1 = +,- 0.7072727132*I,
> > > > > > > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> > > > > > >
> > > > > > > And I selected here randomly as an example two constants of integration
> > > > > > > in this my two analytic solutions calculation:
> > > > > > >
> > > > > > > K1 = - 0.7072727132*I
> > > > > > > and
> > > > > > > K2 = 0.5943942676 - 0.5943942676*I
> > > > > > >
> > > > > > > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > > > > > > (Phi(P) is pure imaginary angle and r(P) is real distance.
> > > > > > > Phiphi(P) is pure imaginary angle and rr(P) is real distance)..
> > > > > > >
> > > > > > > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > > > > > > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > > > > > > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> > > > > > >
> > > > > > > Those both plots resemble somehow pendulum orbit ?
> > > > > > >
> > > > > > > I have NO physical interpretations of these solutions
> > > > > > > and I think that these have NO real physical applications.
> > > > > > >
> > > > > > > Hannu Poropudas
> > > > > > I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
> > > > > >
> > > > > > It seems to me that this integral is too complicated to calculate analytically, but it could be so
> > > > > > with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> > > > > > in this above case that the coordinate time T could be two dimensional complex number ?
> > > > > >
> > > > > > This also seems to support what I said above.
> > > > > > I have NO physical interpretations of these solutions
> > > > > > and I think at the moment that these have NO real physical applications.
> > > > > >
> > > > > > And we should study two dimensional complex mathematics of two dimensional
> > > > > > coordinate time (T) in this complicated integral better,
> > > > > > if we try to better understand this situation,
> > > > > > if this would be sensible at all ?
> > > > > >
> > > > > > Best Regards,
> > > > > > Hannu Poropudas
> > > > > CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
> > > > > Sorry that I confused these two letters.
> > > > >
> > > > > Hannu
> > > > I found one interesting reference, which show that there
> > > > are really only few astrophysically significant exact solutions to Einstein's field equations.
> > > >
> > > > Ishak, M. 2015.
> > > > Exact Solutions to Einstein's Equations in Astrophysics.
> > > > Texas Symposium on Relativistic Astrophysics, Geneva 2015.
> > > > 33 pages.
> > > > https://personal.utdallas.edu/~mishak/ExactSolutionsInAstrophysics_Ishak_Final.pdf
> > > >
> > > > Please take a look.
> > > >
> > > > Best Regards,
> > > > Hannu Poropudas
> > > In order to me more mathematically complete I calculate also
> > > approximate proper time t integral (primitive function)
> > > and plotted both real part and imaginary part of it.
> > > I have NO interpretations of these.
> > >
> > > ># Approximate proper time t integral calculated HP 27.10.2023
> > > ># REMARK: My letter convenience t=proper time T=coordinate time
> > > ># Real part and Imaginary part plotted
> > > >#K3:=0;
> > > >#K1 := -0.7072727132*I;
> > > >#K2 := 0.5943942676-0.5943942676*I;
> > > >#m := MG;
> > > >#MG := 0.6292090968e12;
> > > >#2*MG := 0.1258418194e13;
> > > >#a2<=r<=a1, definition area
> > > >#a2=2.720522631*10^11, a1=8.306841627*10^11
> > >
> > > >#Real part of primitive function t approx.
> > > ># Series approx at r = MG up to 7 degree.
> > > >REIF:=r->-0.9292411964e-8*r+0.8717127610e-20*r^2+0.4446277653e-31*(r-0.6292090968e12)^3+0.2329675135e-42*(r-0.6292090968e12)^4+0.3071201158e-47*(r-0.6292090968e12)^5+0.2827253683e-58*(r-0.6292090968e12)^6+0.2065510967e-69*(r-0.6292090968e12)^7;
> > >
> > > >#Imaginary part of primitive function t approx.
> > > >># Series approx at r = MG up to 7 degree.
> > > >IMIF:=r->-0.2217185446e-7*r+0.3637453960e-19*r^2+0.1018586871e-30*(r-0.6292090968e12)^3+0.3376062792e-42*(r-0.6292090968e12)^4+0.4794788388e-47*(r-0.6292090968e12)^5+0.2475402813e-58*(r-0.6292090968e12)^6+0.1233132761e-69*(r-0.6292090968e12)^7;
> > >
> > > > #a2<=r<=a1, definition area
> > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > #MG := 0.6292090968e12;
> > > > #2*MG := 0.1258418194e13;
> > >
> > > >plot(REIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > >
> > > > #a2<=r<=a1, definition area
> > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > #MG := 0.6292090968e12;
> > > > #2*MG := 0.1258418194e13;
> > >
> > > >plot(IMIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > >
> > >
> > > Best Regards,
> > > Hannu Poropudas
> > Error estimations of these two series approximations (function - (series approx function), not integrated here):
> >
> > For REIF(r) : Error is approximately = 0 when 5.2*10^11 <r<7.2*10^11,
> > Max negative error about -2.15 near 2.72*10^11,
> > Max negative error about -0.2 near 8.307*10^11.
> >
> > For IMIF(r): Error is approximately = 0 when 5.4*10^1<r<7.0*10^11,
> > Max negative error about -1.09 near 2.72*10^11,
> > Max negative error about -0.1 near 8.307*10^11.
> >
> > These REIF(r) and IMIF(r) seems to me to be TWO BRANCHES of proper time t ?
> >
> > Best Regards,
> > Hannu Poropudas
> Hannu Poropudas, I have a challenge for you. I want you to use the new theory of gravitation, aka General Relativity, and your new spherical solution, to explicitly calculate the normal force of a 1.0 kg brick resting on my kitchen tabletop at an altitude of 100m above sea level in Seattle Warshington. Neither Tom Roberts nor Legion nor Gary Harnagel, nor Dono, nor Jan(s), nor Prokary, nor Pyth, nor Dirk, nor Paul B. Anderson, nor Athel will even attempt such an impossibly complex computation. Will YOU, Hannu Poropudas? If not, why not?


Click here to read the complete article
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<1316efc7-2e2b-42e6-9fee-84113611501bn@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127411&group=sci.physics.relativity#127411

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:a0c:f84b:0:b0:671:4350:edfa with SMTP id g11-20020a0cf84b000000b006714350edfamr33331qvo.0.1698546801936;
Sat, 28 Oct 2023 19:33:21 -0700 (PDT)
X-Received: by 2002:a05:6870:35d5:b0:1e9:dce8:8ae8 with SMTP id
c21-20020a05687035d500b001e9dce88ae8mr3229032oak.3.1698546801673; Sat, 28 Oct
2023 19:33:21 -0700 (PDT)
Path: i2pn2.org!i2pn.org!news.niel.me!glou.org!news.glou.org!fdn.fr!proxad.net!feeder1-2.proxad.net!209.85.160.216.MISMATCH!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Sat, 28 Oct 2023 19:33:21 -0700 (PDT)
In-Reply-To: <5410146f-0271-44c3-98be-d6ee33e08cc2n@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=2601:602:9b00:7c40:9005:8ce2:b54:4ea8;
posting-account=9sfziQoAAAD_UD5NP4mC4DjcYPHqoIUc
NNTP-Posting-Host: 2601:602:9b00:7c40:9005:8ce2:b54:4ea8
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
<83c1577a-1061-46c8-baed-693131429119n@googlegroups.com> <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
<96895655-f98c-4a48-bdf2-b9968c08887bn@googlegroups.com> <e1bca745-5755-4617-9901-82b488f20170n@googlegroups.com>
<5410146f-0271-44c3-98be-d6ee33e08cc2n@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <1316efc7-2e2b-42e6-9fee-84113611501bn@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: patdo...@comcast.net (patdolan)
Injection-Date: Sun, 29 Oct 2023 02:33:21 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
 by: patdolan - Sun, 29 Oct 2023 02:33 UTC

On Saturday, October 28, 2023 at 1:19:28 PM UTC-7, Ross Finlayson wrote:
> On Saturday, October 28, 2023 at 1:02:58 PM UTC-7, patdolan wrote:
> > On Saturday, October 28, 2023 at 1:49:22 AM UTC-7, Hannu Poropudas wrote:
> > > perjantai 27. lokakuuta 2023 klo 10.46.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > torstai 26. lokakuuta 2023 klo 11.04.40 UTC+3 Hannu Poropudas kirjoitti:
> > > > > keskiviikko 25. lokakuuta 2023 klo 14.37.35 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > > > > > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > > > > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > > > Spherically symmetric metrics which satisfies
> > > > > > > > > > > > Einstein's vacuum field equations.
> > > > > > > > > > > >
> > > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > > >
> > > > > > > > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > > > > > > > >
> > > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > > >
> > > > > > > > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > > > > > > > >
> > > > > > > > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > > > > > > > >
> > > > > > > > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > > > > > > > >
> > > > > > > > > > > > There exist a book called something like
> > > > > > > > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > > > > > > > which have about 740 pages and
> > > > > > > > > > > > I don't know if this solution is among them?
> > > > > > > > > > > >
> > > > > > > > > > > > Three singularity points of the metrics are the following:
> > > > > > > > > > > >
> > > > > > > > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > > > > > > > >
> > > > > > > > > > > >
> > > > > > > > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > > > > > > > >
> > > > > > > > > > > > Reference:
> > > > > > > > > > > > Tolman R. C., 1934.
> > > > > > > > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > > > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > > > > > > > >
> > > > > > > > > > > > Best Regrads,
> > > > > > > > > > > >
> > > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > > >
> > > > > > > > > > > > Kolamäentie 9E
> > > > > > > > > > > > 90900 Kiiminki / Oulu
> > > > > > > > > > > > Finland
> > > > > > > > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > > > > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > > > > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > > > > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > > > > > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > > > > > > > >
> > > > > > > > > > > MG = 6.292090968*10^11,
> > > > > > > > > > > 2*MG=1.258418194*10^12.
> > > > > > > > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > > > > > > > >
> > > > > > > > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > > > > > > > +,- sign for integral
> > > > > > > > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > > > > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > > > > > > > >
> > > > > > > > > > > and
> > > > > > > > > > >
> > > > > > > > > > > -1.103327381*10^12<=rr<=0
> > > > > > > > > > > +,- sign for integral
> > > > > > > > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > > > > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > > > > > > > >
> > > > > > > > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > > > > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > > > > > > > Real parts = 0 in these integrals.
> > > > > > > > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > > > > > > > How to interpret these Imaginary angle plots?
> > > > > > > > > > >
> > > > > > > > > > > Best Regards,
> > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > Your solution is either:
> > > > > > > > > >
> > > > > > > > > > (a) incorrect, or:
> > > > > > > > > >
> > > > > > > > > > (b) isometric to Schwarzschild's.
> > > > > > > > > >
> > > > > > > > > > Don't waste your time.
> > > > > > > > > >
> > > > > > > > > > --
> > > > > > > > > > Jan
> > > > > > > > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > > > > > > > >
> > > > > > > > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > > > > > > > >
> > > > > > > > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > > > > > > > but you are correct in point of view that it may not be physically acceptable solution
> > > > > > > > > of these equations at our present orthodoxic physical knowledge.
> > > > > > > > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > > > > > > > >
> > > > > > > > > There exist also few other integration constants from Euler-Largrange equations,
> > > > > > > > > but I have selected randomly only one couple of them in this example calculation.
> > > > > > > > >
> > > > > > > > > Hannu
> > > > > > > > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > > > > > > > constants from Euler-Largrange equations:
> > > > > > > >
> > > > > > > > I mark now for convenience T = coordinate time and t = proper time.
> > > > > > > >
> > > > > > > > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > > > > > > > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > > > > > > > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> > > > > > > >
> > > > > > > > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > > > > > > > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > > > > > > > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > > > > > > > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > > > > > > > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> > > > > > > >
> > > > > > > > K1 = +,- 0.7072727132*I,
> > > > > > > > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> > > > > > > >
> > > > > > > > And I selected here randomly as an example two constants of integration
> > > > > > > > in this my two analytic solutions calculation:
> > > > > > > >
> > > > > > > > K1 = - 0.7072727132*I
> > > > > > > > and
> > > > > > > > K2 = 0.5943942676 - 0.5943942676*I
> > > > > > > >
> > > > > > > > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > > > > > > > (Phi(P) is pure imaginary angle and r(P) is real distance.
> > > > > > > > Phiphi(P) is pure imaginary angle and rr(P) is real distance).
> > > > > > > >
> > > > > > > > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > > > > > > > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > > > > > > > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> > > > > > > >
> > > > > > > > Those both plots resemble somehow pendulum orbit ?
> > > > > > > >
> > > > > > > > I have NO physical interpretations of these solutions
> > > > > > > > and I think that these have NO real physical applications.
> > > > > > > >
> > > > > > > > Hannu Poropudas
> > > > > > > I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
> > > > > > >
> > > > > > > It seems to me that this integral is too complicated to calculate analytically, but it could be so
> > > > > > > with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> > > > > > > in this above case that the coordinate time T could be two dimensional complex number ?
> > > > > > >
> > > > > > > This also seems to support what I said above.
> > > > > > > I have NO physical interpretations of these solutions
> > > > > > > and I think at the moment that these have NO real physical applications.
> > > > > > >
> > > > > > > And we should study two dimensional complex mathematics of two dimensional
> > > > > > > coordinate time (T) in this complicated integral better,
> > > > > > > if we try to better understand this situation,
> > > > > > > if this would be sensible at all ?
> > > > > > >
> > > > > > > Best Regards,
> > > > > > > Hannu Poropudas
> > > > > > CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
> > > > > > Sorry that I confused these two letters.
> > > > > >
> > > > > > Hannu
> > > > > I found one interesting reference, which show that there
> > > > > are really only few astrophysically significant exact solutions to Einstein's field equations.
> > > > >
> > > > > Ishak, M. 2015.
> > > > > Exact Solutions to Einstein's Equations in Astrophysics.
> > > > > Texas Symposium on Relativistic Astrophysics, Geneva 2015.
> > > > > 33 pages.
> > > > > https://personal.utdallas.edu/~mishak/ExactSolutionsInAstrophysics_Ishak_Final.pdf
> > > > >
> > > > > Please take a look.
> > > > >
> > > > > Best Regards,
> > > > > Hannu Poropudas
> > > > In order to me more mathematically complete I calculate also
> > > > approximate proper time t integral (primitive function)
> > > > and plotted both real part and imaginary part of it.
> > > > I have NO interpretations of these.
> > > >
> > > > ># Approximate proper time t integral calculated HP 27.10.2023
> > > > ># REMARK: My letter convenience t=proper time T=coordinate time
> > > > ># Real part and Imaginary part plotted
> > > > >#K3:=0;
> > > > >#K1 := -0.7072727132*I;
> > > > >#K2 := 0.5943942676-0.5943942676*I;
> > > > >#m := MG;
> > > > >#MG := 0.6292090968e12;
> > > > >#2*MG := 0.1258418194e13;
> > > > >#a2<=r<=a1, definition area
> > > > >#a2=2.720522631*10^11, a1=8.306841627*10^11
> > > >
> > > > >#Real part of primitive function t approx.
> > > > ># Series approx at r = MG up to 7 degree.
> > > > >REIF:=r->-0.9292411964e-8*r+0.8717127610e-20*r^2+0.4446277653e-31*(r-0.6292090968e12)^3+0.2329675135e-42*(r-0.6292090968e12)^4+0.3071201158e-47*(r-0.6292090968e12)^5+0.2827253683e-58*(r-0.6292090968e12)^6+0.2065510967e-69*(r-0.6292090968e12)^7;
> > > >
> > > > >#Imaginary part of primitive function t approx.
> > > > >># Series approx at r = MG up to 7 degree.
> > > > >IMIF:=r->-0.2217185446e-7*r+0.3637453960e-19*r^2+0.1018586871e-30*(r-0.6292090968e12)^3+0.3376062792e-42*(r-0.6292090968e12)^4+0.4794788388e-47*(r-0.6292090968e12)^5+0.2475402813e-58*(r-0.6292090968e12)^6+0.1233132761e-69*(r-0.6292090968e12)^7;
> > > >
> > > > > #a2<=r<=a1, definition area
> > > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > > #MG := 0.6292090968e12;
> > > > > #2*MG := 0.1258418194e13;
> > > >
> > > > >plot(REIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > > >
> > > > > #a2<=r<=a1, definition area
> > > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > > #MG := 0.6292090968e12;
> > > > > #2*MG := 0.1258418194e13;
> > > >
> > > > >plot(IMIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > > >
> > > >
> > > > Best Regards,
> > > > Hannu Poropudas
> > > Error estimations of these two series approximations (function - (series approx function), not integrated here):
> > >
> > > For REIF(r) : Error is approximately = 0 when 5.2*10^11 <r<7.2*10^11,
> > > Max negative error about -2.15 near 2.72*10^11,
> > > Max negative error about -0.2 near 8.307*10^11.
> > >
> > > For IMIF(r): Error is approximately = 0 when 5.4*10^1<r<7.0*10^11,
> > > Max negative error about -1.09 near 2.72*10^11,
> > > Max negative error about -0.1 near 8.307*10^11.
> > >
> > > These REIF(r) and IMIF(r) seems to me to be TWO BRANCHES of proper time t ?
> > >
> > > Best Regards,
> > > Hannu Poropudas
> > Hannu Poropudas, I have a challenge for you. I want you to use the new theory of gravitation, aka General Relativity, and your new spherical solution, to explicitly calculate the normal force of a 1.0 kg brick resting on my kitchen tabletop at an altitude of 100m above sea level in Seattle Warshington. Neither Tom Roberts nor Legion nor Gary Harnagel, nor Dono, nor Jan(s), nor Prokary, nor Pyth, nor Dirk, nor Paul B. Anderson, nor Athel will even attempt such an impossibly complex computation. Will YOU, Hannu Poropudas? If not, why not?
> Paddy what you do is go down to a flea market and find an old scale according to
> spring pendulum or the off-weight, toward a balance scale, and maybe a known
> fixed mass weight for a balance, then also one of those new densitometers of
> the sorts of bathroom scales, or whatever's considered dead-weight, then you
> yourself can confirm small differences among the two configurations of experiment,
> then explain how clocks drifted last year back around to being on time.


Click here to read the complete article
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<847bb89c-945e-435b-a92a-c5e70ef39fabn@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127419&group=sci.physics.relativity#127419

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:a05:620a:404e:b0:774:2ad1:b816 with SMTP id i14-20020a05620a404e00b007742ad1b816mr151470qko.4.1698605244457;
Sun, 29 Oct 2023 11:47:24 -0700 (PDT)
X-Received: by 2002:a4a:e058:0:b0:57b:376c:1ab4 with SMTP id
v24-20020a4ae058000000b0057b376c1ab4mr2649688oos.1.1698605244055; Sun, 29 Oct
2023 11:47:24 -0700 (PDT)
Path: i2pn2.org!i2pn.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer01.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Sun, 29 Oct 2023 11:47:23 -0700 (PDT)
In-Reply-To: <1316efc7-2e2b-42e6-9fee-84113611501bn@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=2601:1c0:c801:9270:784d:4efb:78db:5046;
posting-account=Dg6LkgkAAABl5NRBT4_iFEO1VO77GchW
NNTP-Posting-Host: 2601:1c0:c801:9270:784d:4efb:78db:5046
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
<83c1577a-1061-46c8-baed-693131429119n@googlegroups.com> <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
<96895655-f98c-4a48-bdf2-b9968c08887bn@googlegroups.com> <e1bca745-5755-4617-9901-82b488f20170n@googlegroups.com>
<5410146f-0271-44c3-98be-d6ee33e08cc2n@googlegroups.com> <1316efc7-2e2b-42e6-9fee-84113611501bn@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <847bb89c-945e-435b-a92a-c5e70ef39fabn@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: mitchrae...@gmail.com (mitchr...@gmail.com)
Injection-Date: Sun, 29 Oct 2023 18:47:24 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 18752
 by: mitchr...@gmail.com - Sun, 29 Oct 2023 18:47 UTC

On Saturday, October 28, 2023 at 7:33:23 PM UTC-7, patdolan wrote:
> On Saturday, October 28, 2023 at 1:19:28 PM UTC-7, Ross Finlayson wrote:
> > On Saturday, October 28, 2023 at 1:02:58 PM UTC-7, patdolan wrote:
> > > On Saturday, October 28, 2023 at 1:49:22 AM UTC-7, Hannu Poropudas wrote:
> > > > perjantai 27. lokakuuta 2023 klo 10.46.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > > torstai 26. lokakuuta 2023 klo 11.04.40 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > keskiviikko 25. lokakuuta 2023 klo 14.37.35 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > > > > > > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > > > > > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > > > > > Spherically symmetric metrics which satisfies
> > > > > > > > > > > > > Einstein's vacuum field equations.
> > > > > > > > > > > > >
> > > > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > > > >
> > > > > > > > > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > > > > > > > > >
> > > > > > > > > > > > > (c=1,G=1 units)
> > > > > > > > > > > > >
> > > > > > > > > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > > > > > > > > >
> > > > > > > > > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > > > > > > > > >
> > > > > > > > > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > > > > > > > > >
> > > > > > > > > > > > > There exist a book called something like
> > > > > > > > > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > > > > > > > > which have about 740 pages and
> > > > > > > > > > > > > I don't know if this solution is among them?
> > > > > > > > > > > > >
> > > > > > > > > > > > > Three singularity points of the metrics are the following:
> > > > > > > > > > > > >
> > > > > > > > > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > > > > > > > > >
> > > > > > > > > > > > >
> > > > > > > > > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > > > > > > > > >
> > > > > > > > > > > > > Reference:
> > > > > > > > > > > > > Tolman R. C., 1934.
> > > > > > > > > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > > > > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > > > > > > > > >
> > > > > > > > > > > > > Best Regrads,
> > > > > > > > > > > > >
> > > > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > > > >
> > > > > > > > > > > > > Kolamäentie 9E
> > > > > > > > > > > > > 90900 Kiiminki / Oulu
> > > > > > > > > > > > > Finland
> > > > > > > > > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > > > > > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > > > > > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > > > > > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > > > > > > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > > > > > > > > >
> > > > > > > > > > > > MG = 6.292090968*10^11,
> > > > > > > > > > > > 2*MG=1.258418194*10^12.
> > > > > > > > > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > > > > > > > > >
> > > > > > > > > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > > > > > > > > +,- sign for integral
> > > > > > > > > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > > > > > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > > > > > > > > >
> > > > > > > > > > > > and
> > > > > > > > > > > >
> > > > > > > > > > > > -1.103327381*10^12<=rr<=0
> > > > > > > > > > > > +,- sign for integral
> > > > > > > > > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > > > > > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > > > > > > > > >
> > > > > > > > > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > > > > > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > > > > > > > > Real parts = 0 in these integrals.
> > > > > > > > > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > > > > > > > > How to interpret these Imaginary angle plots?
> > > > > > > > > > > >
> > > > > > > > > > > > Best Regards,
> > > > > > > > > > > > Hannu Poropudas
> > > > > > > > > > > Your solution is either:
> > > > > > > > > > >
> > > > > > > > > > > (a) incorrect, or:
> > > > > > > > > > >
> > > > > > > > > > > (b) isometric to Schwarzschild's.
> > > > > > > > > > >
> > > > > > > > > > > Don't waste your time.
> > > > > > > > > > >
> > > > > > > > > > > --
> > > > > > > > > > > Jan
> > > > > > > > > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > > > > > > > > >
> > > > > > > > > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > > > > > > > > >
> > > > > > > > > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > > > > > > > > but you are correct in point of view that it may not be physically acceptable solution
> > > > > > > > > > of these equations at our present orthodoxic physical knowledge.
> > > > > > > > > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > > > > > > > > >
> > > > > > > > > > There exist also few other integration constants from Euler-Largrange equations,
> > > > > > > > > > but I have selected randomly only one couple of them in this example calculation.
> > > > > > > > > >
> > > > > > > > > > Hannu
> > > > > > > > > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > > > > > > > > constants from Euler-Largrange equations:
> > > > > > > > >
> > > > > > > > > I mark now for convenience T = coordinate time and t = proper time.
> > > > > > > > >
> > > > > > > > > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > > > > > > > > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > > > > > > > > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> > > > > > > > >
> > > > > > > > > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > > > > > > > > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > > > > > > > > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > > > > > > > > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > > > > > > > > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> > > > > > > > >
> > > > > > > > > K1 = +,- 0.7072727132*I,
> > > > > > > > > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> > > > > > > > >
> > > > > > > > > And I selected here randomly as an example two constants of integration
> > > > > > > > > in this my two analytic solutions calculation:
> > > > > > > > >
> > > > > > > > > K1 = - 0.7072727132*I
> > > > > > > > > and
> > > > > > > > > K2 = 0.5943942676 - 0.5943942676*I
> > > > > > > > >
> > > > > > > > > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > > > > > > > > (Phi(P) is pure imaginary angle and r(P) is real distance..
> > > > > > > > > Phiphi(P) is pure imaginary angle and rr(P) is real distance).
> > > > > > > > >
> > > > > > > > > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > > > > > > > > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > > > > > > > > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> > > > > > > > >
> > > > > > > > > Those both plots resemble somehow pendulum orbit ?
> > > > > > > > >
> > > > > > > > > I have NO physical interpretations of these solutions
> > > > > > > > > and I think that these have NO real physical applications..
> > > > > > > > >
> > > > > > > > > Hannu Poropudas
> > > > > > > > I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
> > > > > > > >
> > > > > > > > It seems to me that this integral is too complicated to calculate analytically, but it could be so
> > > > > > > > with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> > > > > > > > in this above case that the coordinate time T could be two dimensional complex number ?
> > > > > > > >
> > > > > > > > This also seems to support what I said above.
> > > > > > > > I have NO physical interpretations of these solutions
> > > > > > > > and I think at the moment that these have NO real physical applications.
> > > > > > > >
> > > > > > > > And we should study two dimensional complex mathematics of two dimensional
> > > > > > > > coordinate time (T) in this complicated integral better,
> > > > > > > > if we try to better understand this situation,
> > > > > > > > if this would be sensible at all ?
> > > > > > > >
> > > > > > > > Best Regards,
> > > > > > > > Hannu Poropudas
> > > > > > > CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
> > > > > > > Sorry that I confused these two letters.
> > > > > > >
> > > > > > > Hannu
> > > > > > I found one interesting reference, which show that there
> > > > > > are really only few astrophysically significant exact solutions to Einstein's field equations.
> > > > > >
> > > > > > Ishak, M. 2015.
> > > > > > Exact Solutions to Einstein's Equations in Astrophysics.
> > > > > > Texas Symposium on Relativistic Astrophysics, Geneva 2015.
> > > > > > 33 pages.
> > > > > > https://personal.utdallas.edu/~mishak/ExactSolutionsInAstrophysics_Ishak_Final.pdf
> > > > > >
> > > > > > Please take a look.
> > > > > >
> > > > > > Best Regards,
> > > > > > Hannu Poropudas
> > > > > In order to me more mathematically complete I calculate also
> > > > > approximate proper time t integral (primitive function)
> > > > > and plotted both real part and imaginary part of it.
> > > > > I have NO interpretations of these.
> > > > >
> > > > > ># Approximate proper time t integral calculated HP 27.10.2023
> > > > > ># REMARK: My letter convenience t=proper time T=coordinate time
> > > > > ># Real part and Imaginary part plotted
> > > > > >#K3:=0;
> > > > > >#K1 := -0.7072727132*I;
> > > > > >#K2 := 0.5943942676-0.5943942676*I;
> > > > > >#m := MG;
> > > > > >#MG := 0.6292090968e12;
> > > > > >#2*MG := 0.1258418194e13;
> > > > > >#a2<=r<=a1, definition area
> > > > > >#a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > >
> > > > > >#Real part of primitive function t approx.
> > > > > ># Series approx at r = MG up to 7 degree.
> > > > > >REIF:=r->-0.9292411964e-8*r+0.8717127610e-20*r^2+0.4446277653e-31*(r-0.6292090968e12)^3+0.2329675135e-42*(r-0.6292090968e12)^4+0.3071201158e-47*(r-0.6292090968e12)^5+0.2827253683e-58*(r-0.6292090968e12)^6+0.2065510967e-69*(r-0.6292090968e12)^7;
> > > > >
> > > > > >#Imaginary part of primitive function t approx.
> > > > > >># Series approx at r = MG up to 7 degree.
> > > > > >IMIF:=r->-0.2217185446e-7*r+0.3637453960e-19*r^2+0.1018586871e-30*(r-0.6292090968e12)^3+0.3376062792e-42*(r-0.6292090968e12)^4+0.4794788388e-47*(r-0.6292090968e12)^5+0.2475402813e-58*(r-0.6292090968e12)^6+0.1233132761e-69*(r-0.6292090968e12)^7;
> > > > >
> > > > > > #a2<=r<=a1, definition area
> > > > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > > > #MG := 0.6292090968e12;
> > > > > > #2*MG := 0.1258418194e13;
> > > > >
> > > > > >plot(REIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > > > >
> > > > > > #a2<=r<=a1, definition area
> > > > > > #a2=2.720522631*10^11, a1=8.306841627*10^11
> > > > > > #MG := 0.6292090968e12;
> > > > > > #2*MG := 0.1258418194e13;
> > > > >
> > > > > >plot(IMIF(r),r=2.720522631*10^11..8.306841627*10^11);
> > > > >
> > > > >
> > > > > Best Regards,
> > > > > Hannu Poropudas
> > > > Error estimations of these two series approximations (function - (series approx function), not integrated here):
> > > >
> > > > For REIF(r) : Error is approximately = 0 when 5.2*10^11 <r<7.2*10^11,
> > > > Max negative error about -2.15 near 2.72*10^11,
> > > > Max negative error about -0.2 near 8.307*10^11.
> > > >
> > > > For IMIF(r): Error is approximately = 0 when 5.4*10^1<r<7.0*10^11,
> > > > Max negative error about -1.09 near 2.72*10^11,
> > > > Max negative error about -0.1 near 8.307*10^11.
> > > >
> > > > These REIF(r) and IMIF(r) seems to me to be TWO BRANCHES of proper time t ?
> > > >
> > > > Best Regards,
> > > > Hannu Poropudas
> > > Hannu Poropudas, I have a challenge for you. I want you to use the new theory of gravitation, aka General Relativity, and your new spherical solution, to explicitly calculate the normal force of a 1.0 kg brick resting on my kitchen tabletop at an altitude of 100m above sea level in Seattle Warshington. Neither Tom Roberts nor Legion nor Gary Harnagel, nor Dono, nor Jan(s), nor Prokary, nor Pyth, nor Dirk, nor Paul B. Anderson, nor Athel will even attempt such an impossibly complex computation. Will YOU, Hannu Poropudas? If not, why not?
> > Paddy what you do is go down to a flea market and find an old scale according to
> > spring pendulum or the off-weight, toward a balance scale, and maybe a known
> > fixed mass weight for a balance, then also one of those new densitometers of
> > the sorts of bathroom scales, or whatever's considered dead-weight, then you
> > yourself can confirm small differences among the two configurations of experiment,
> > then explain how clocks drifted last year back around to being on time.
> Ross, yes, that's how you do it. And it is easy to write out the equation(s) representing that experiment.
>
> I now request that any of the aforementioned write out the equations of the new gravitation, aka general relativity, so that we may check the results of the new theory against the old. I confidently reiterate that to do so is impossibly complex. And I give a my proof the fact that not a single denizen of this forum can or will do it; nor have they even deigned to respond why they won't do it. Hannu Poropudas and the rest just look at me as though I am crazy for even asking. Even though Hannu is in possession of a brand new metric contrived for this exact purpose.


Click here to read the complete article
Re: I found one spherically symmetric solution of Einstein's vacuum field equations

<b19815d8-0902-44f3-9861-2e595fbc4be8n@googlegroups.com>

  copy mid

https://www.novabbs.com/tech/article-flat.php?id=127448&group=sci.physics.relativity#127448

  copy link   Newsgroups: sci.physics.relativity
X-Received: by 2002:ad4:4ba5:0:b0:66d:8510:3b65 with SMTP id i5-20020ad44ba5000000b0066d85103b65mr142957qvw.3.1698652761285;
Mon, 30 Oct 2023 00:59:21 -0700 (PDT)
X-Received: by 2002:a9d:61da:0:b0:6c4:b847:cb9a with SMTP id
h26-20020a9d61da000000b006c4b847cb9amr2692467otk.0.1698652760950; Mon, 30 Oct
2023 00:59:20 -0700 (PDT)
Path: i2pn2.org!i2pn.org!news.niel.me!glou.org!news.glou.org!usenet-fr.net!proxad.net!feeder1-2.proxad.net!209.85.160.216.MISMATCH!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.physics.relativity
Date: Mon, 30 Oct 2023 00:59:20 -0700 (PDT)
In-Reply-To: <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=130.231.159.203; posting-account=1H9XwwoAAADT6KUHcLIWMoply9bM_d5b
NNTP-Posting-Host: 130.231.159.203
References: <cc59711b-a47e-4a88-9d85-de5a6830bdfan@googlegroups.com>
<1e246bd0-1f5f-42d3-baab-391e406a7c3an@googlegroups.com> <1d9a0e76-2861-4ecd-b2ad-ae46360f8e4dn@googlegroups.com>
<1632a0bb-8c54-4b60-9e44-88adfab3cd2en@googlegroups.com> <1f84a5ff-9cd6-4de6-a432-dee6c6b89de8n@googlegroups.com>
<aeda1a1b-8421-45f2-ab15-0a112b7599cfn@googlegroups.com> <c6afc3ee-2e00-42aa-9b4e-c8a9f80470c0n@googlegroups.com>
<83c1577a-1061-46c8-baed-693131429119n@googlegroups.com> <c7a992b3-2d54-41e0-89bf-69d1868aa1cen@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <b19815d8-0902-44f3-9861-2e595fbc4be8n@googlegroups.com>
Subject: Re: I found one spherically symmetric solution of Einstein's vacuum
field equations
From: haporop...@gmail.com (Hannu Poropudas)
Injection-Date: Mon, 30 Oct 2023 07:59:21 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
 by: Hannu Poropudas - Mon, 30 Oct 2023 07:59 UTC

perjantai 27. lokakuuta 2023 klo 10.46.55 UTC+3 Hannu Poropudas kirjoitti:
> torstai 26. lokakuuta 2023 klo 11.04.40 UTC+3 Hannu Poropudas kirjoitti:
> > keskiviikko 25. lokakuuta 2023 klo 14.37.35 UTC+3 Hannu Poropudas kirjoitti:
> > > keskiviikko 25. lokakuuta 2023 klo 12.01.55 UTC+3 Hannu Poropudas kirjoitti:
> > > > tiistai 24. lokakuuta 2023 klo 11.56.49 UTC+3 Hannu Poropudas kirjoitti:
> > > > > perjantai 20. lokakuuta 2023 klo 9.54.12 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > torstai 19. lokakuuta 2023 klo 21.41.08 UTC+3 JanPB kirjoitti:
> > > > > > > On Thursday, October 19, 2023 at 12:22:43 AM UTC-7, Hannu Poropudas wrote:
> > > > > > > > sunnuntai 15. lokakuuta 2023 klo 11.35.22 UTC+3 Hannu Poropudas kirjoitti:
> > > > > > > > > Spherically symmetric metrics which satisfies
> > > > > > > > > Einstein's vacuum field equations.
> > > > > > > > >
> > > > > > > > > (c=1,G=1 units)
> > > > > > > > >
> > > > > > > > > matrix([[m^2/((1-m/r)^4*r^4*(1-2*m/r)), 0, 0, 0], [0, -1/(1-m/r)^2, 0, 0], [0, 0, -sin(theta)^2/(1-m/r)^2, 0], [0, 0, 0, 1-2*m/r]])])
> > > > > > > > >
> > > > > > > > > (c=1,G=1 units)
> > > > > > > > >
> > > > > > > > > ds^2=(m^2/((1-m/r)^4*r^4*(1-2*m/r)))*dr^2-(1/(1-m/r)^2)*dtheta^2-(sin(theta)^2/(1-m/r)^2)*dphi^2+(1-2*m/r)*dt^2
> > > > > > > > >
> > > > > > > > > (m -> m*G/c^2 , if SI-units are used.)
> > > > > > > > >
> > > > > > > > > I don't know that would this solution have any astrophysical applications?
> > > > > > > > >
> > > > > > > > > There exist a book called something like
> > > > > > > > > "Exact Solutions of the Einstein Field Equations",
> > > > > > > > > which have about 740 pages and
> > > > > > > > > I don't know if this solution is among them?
> > > > > > > > >
> > > > > > > > > Three singularity points of the metrics are the following:
> > > > > > > > >
> > > > > > > > > r = 0, r = m*G/c^2 and r = 2*m*G/c^2.
> > > > > > > > >
> > > > > > > > >
> > > > > > > > > I have used generalized form of eq. (9) on page 171, when I calculated this solution with my Maple 9.
> > > > > > > > >
> > > > > > > > > Reference:
> > > > > > > > > Tolman R. C., 1934.
> > > > > > > > > Effect of inhomogeneity on cosmological models.
> > > > > > > > > Proc. Natl. Acad. Sci. USA, 1934, Mar; 20 (30): 1679-176.
> > > > > > > > >
> > > > > > > > > Best Regrads,
> > > > > > > > >
> > > > > > > > > Hannu Poropudas
> > > > > > > > >
> > > > > > > > > Kolamäentie 9E
> > > > > > > > > 90900 Kiiminki / Oulu
> > > > > > > > > Finland
> > > > > > > > I used random numbers for arbitrary example , which I don't know if it is sensible at all in this case
> > > > > > > > due three integration constants from Euler-Lagrange equations does not have
> > > > > > > > same interpretations as in Schwarzschild case (energy (constant) and angular momementum (constant) etc).
> > > > > > > > I used these guess numbers from aphelion and perihelion of S2-star around SgrA* black hole which calculations I published
> > > > > > > > some time ago in this sci.physics.relativity Google Group. (I used c=1 units , c.g.s units then and I use again c=1 units and c.g.s units here)
> > > > > > > >
> > > > > > > > MG = 6.292090968*10^11,
> > > > > > > > 2*MG=1.258418194*10^12.
> > > > > > > > I found two parametric form analytic solutions (Both are primitive functions, 0<=P<=Pi/2):
> > > > > > > >
> > > > > > > > 2.720522631*10^11<=r<=8.306841627*10^11
> > > > > > > > +,- sign for integral
> > > > > > > > phi= Int(-0.8328841065*I/sqrt(1-0.5394753492*sin(P)^2),P)
> > > > > > > > r=-2.259895064*10^23/(5.586318996*10^11*sin(P)^2-8.306841627*10^11)
> > > > > > > >
> > > > > > > > and
> > > > > > > >
> > > > > > > > -1.103327381*10^12<=rr<=0
> > > > > > > > +,- sign for integral
> > > > > > > > phiphi=Int(-0.8330796374*I/sqrt(1-0.4605246509*sin(P)^2),P)
> > > > > > > > rr= (9.165165817*10^23*sin(P)^2-9.165165817*10^23)/(1.103327381*10^12*sin(P)^2+8.306841627*10^11)
> > > > > > > >
> > > > > > > > I calculated also these integrals but their formulae are too long to copy here.
> > > > > > > > Both sign can be taken into account when plotting Imaginary parts 0<=P<=Pi.
> > > > > > > > Real parts = 0 in these integrals.
> > > > > > > > How to interpret pure imaginary phi and phiphi angles?
> > > > > > > > How to interpret these Imaginary angle plots?
> > > > > > > >
> > > > > > > > Best Regards,
> > > > > > > > Hannu Poropudas
> > > > > > > Your solution is either:
> > > > > > >
> > > > > > > (a) incorrect, or:
> > > > > > >
> > > > > > > (b) isometric to Schwarzschild's.
> > > > > > >
> > > > > > > Don't waste your time.
> > > > > > >
> > > > > > > --
> > > > > > > Jan
> > > > > > Your (b) alternative seems not to be true due two separate event horizons in this metrics ?
> > > > > >
> > > > > > Schwarzschild metric comes also correctly, but with different sign selection in metrics than what I used.
> > > > > >
> > > > > > Your (a) alternative is not true due this metric satisfies Einstein's vacuum field equations,
> > > > > > but you are correct in point of view that it may not be physically acceptable solution
> > > > > > of these equations at our present orthodoxic physical knowledge..
> > > > > > This is indicated by imaginary unit (I=sqrt(-1)) in these example of two analytic solutions.
> > > > > >
> > > > > > There exist also few other integration constants from Euler-Largrange equations,
> > > > > > but I have selected randomly only one couple of them in this example calculation.
> > > > > >
> > > > > > Hannu
> > > > > I put here those strange (NO ordinary physical interpretation) formulae of integration
> > > > > constants from Euler-Largrange equations:
> > > > >
> > > > > I mark now for convenience T = coordinate time and t = proper time.
> > > > >
> > > > > (dphi/dt)/(1-m/r)^2 = K1 (constant of integration)
> > > > > (1-2*m/r)*(dT/dt) = K2 (constant of integration)
> > > > > (1-2*m/r)*(dT/dt)^2 - m^2*(dr/dt)^2 / ( (1-m/r)^4*r^4*(1-2*m/r) ) - (dphi/dt)^2 / (1-m/r)^2 = 1.
> > > > >
> > > > > I calculated for randomly selected numerical values of S2-star aphelion and perhelion
> > > > > distances (c=1 units, and c.g.s units) from my earlier calculations of analytic GR solutions
> > > > > for S2-star orbit around SgrA* black hole (sci.physics.relativity published)
> > > > > to calculate two integration constants K1 and K2 of Euler-Largange equations
> > > > > (NO ordinary physical interpretation), (I = sqrt(-1) = imaginary unit):
> > > > >
> > > > > K1 = +,- 0.7072727132*I,
> > > > > K2 = +,- 0.5943942676 +,- 0.5943942676*I,
> > > > >
> > > > > And I selected here randomly as an example two constants of integration
> > > > > in this my two analytic solutions calculation:
> > > > >
> > > > > K1 = - 0.7072727132*I
> > > > > and
> > > > > K2 = 0.5943942676 - 0.5943942676*I
> > > > >
> > > > > This selection gave those two pure imaginary analytic solutions which I gave here earlier.
> > > > > (Phi(P) is pure imaginary angle and r(P) is real distance.
> > > > > Phiphi(P) is pure imaginary angle and rr(P) is real distance).
> > > > >
> > > > > Plot ([Im(phi(P)),r(P),P=0..Pi]);
> > > > > Plot ([Im(phiphi(P)),rr(P),P=0..Pi]);
> > > > > gives both +, - solutions in both cases (P..Pi/2 gives only one branch and P..Pi gives both branches)
> > > > >
> > > > > Those both plots resemble somehow pendulum orbit ?
> > > > >
> > > > > I have NO physical interpretations of these solutions
> > > > > and I think that these have NO real physical applications.
> > > > >
> > > > > Hannu Poropudas
> > > > I investigated also question that what kind of coordinate time (T) solution would be in parametric form ?
> > > >
> > > > It seems to me that this integral is too complicated to calculate analytically, but it could be so
> > > > with those above K1 and K2 (plus K3 = 0 additional integration constant in Euler-Lagrange equations)
> > > > in this above case that the coordinate time T could be two dimensional complex number ?
> > > >
> > > > This also seems to support what I said above.
> > > > I have NO physical interpretations of these solutions
> > > > and I think at the moment that these have NO real physical applications.
> > > >
> > > > And we should study two dimensional complex mathematics of two dimensional
> > > > coordinate time (T) in this complicated integral better,
> > > > if we try to better understand this situation,
> > > > if this would be sensible at all ?
> > > >
> > > > Best Regards,
> > > > Hannu Poropudas
> > > CORRECTION: It is proper time (t) integral in question, not coordinate time (T).
> > > Sorry that I confused these two letters.
> > >
> > > Hannu
> > I found one interesting reference, which show that there
> > are really only few astrophysically significant exact solutions to Einstein's field equations.
> >
> > Ishak, M. 2015.
> > Exact Solutions to Einstein's Equations in Astrophysics.
> > Texas Symposium on Relativistic Astrophysics, Geneva 2015.
> > 33 pages.
> > https://personal.utdallas.edu/~mishak/ExactSolutionsInAstrophysics_Ishak_Final.pdf
> >
> > Please take a look.
> >
> > Best Regards,
> > Hannu Poropudas
> In order to me more mathematically complete I calculate also
> approximate proper time t integral (primitive function)
> and plotted both real part and imaginary part of it.
> I have NO interpretations of these.
>
> ># Approximate proper time t integral calculated HP 27.10.2023
> ># REMARK: My letter convenience t=proper time T=coordinate time
> ># Real part and Imaginary part plotted
> >#K3:=0;
> >#K1 := -0.7072727132*I;
> >#K2 := 0.5943942676-0.5943942676*I;
> >#m := MG;
> >#MG := 0.6292090968e12;
> >#2*MG := 0.1258418194e13;
> >#a2<=r<=a1, definition area
> >#a2=2.720522631*10^11, a1=8.306841627*10^11
>
> >#Real part of primitive function t approx.
> ># Series approx at r = MG up to 7 degree.


Click here to read the complete article
Pages:12
server_pubkey.txt

rocksolid light 0.9.8
clearnet tor